tìm x,y thuộc Z
a,(x+5).(y-3)=11
b,xy-2x=-19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) xy - 2y = -19
=> y(x - 2) = -19
=> x - 2 \(\in\) Ư(-19) = Ư(19) = {-1;1;-19;19}
Ta có bảng sau:
x - 2 | -1 | 1 | -19 | 19 |
x | 1 | 3 | -17 | 21 |
y | 19 | -19 | 1 | -1 |
Vậy: (x;y) \(\in\){(1;19);(3;-19);(-17;1);(21;-1)}
a) x + 5 \(\in\)Ư(11) = {-1;1;-11;11}
Ta có bảng sau:
x + 5 | -1 | 1 | -11 | 11 |
x | -6 | -4 | -16 | 6 |
y - 3 | -11 | 11 | -1 | 1 |
y | -8 | 14 | 2 | 4 |
Vậy: (x; y) \(\in\) {(-6;-8);(-4;14);(-16;2);(6;4)}
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+=0 <=> 50.x+2500=0 => x=-2500/50=-50
a,Ta có:\(xy+x=3\)
\(\Leftrightarrow x\left(y+1\right)=3\)
Vì x,y thuộc Z \(\hept{\begin{cases}x\\y+1\end{cases}}\in Z\)
\(\Rightarrow x;y+1\inƯ\left(3\right)\)
\(\Rightarrow x;y+1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\y+1=3\Rightarrow y=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y+1=-3\Rightarrow y=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\y+1=1\Rightarrow y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\y+1=-1\Rightarrow y=-2\end{cases}}\)
câu thứ 2 là x+xy+y=9 chứ ko phải bằng 3 nhé . Các bạn giải giùm mình nha. Thank my friends
b) x + xy + y = 3
=> x(y + 1) + y = 3
=> x(y + 1) + (y + 1) = 4
=> (x + 1)(y + 1) = 4 = 1 . 4 = 4 . 1 = 2 . 2
Lập bảng :
x + 1 | 1 | 4 | -1 | -4 | 2 | -2 |
y + 1 | 4 | 1 | -4 | -1 | -2 | 2 |
x | 0 | 3 | -2 | -5 | 1 | -3 |
y | 3 | 0 | -5 | -2 | -3 | 1 |
Vậy ...
a) \(xy+3x-2y-11=0\)
\(x\left(y+3\right)-2y-6-5=0\)
\(x\left(y+3\right)-2\left(y+3\right)=5\)
\(\left(x-2\right)\left(y+3\right)=5\)
\(x-2;y+3\in U\left(5\right)\)
x-2 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
b) \(xy+2x+y+11=0\)
\(x\left(y+2\right)+y+2+9=0\)
\(x\left(y+2\right)+\left(y+2\right)=-9\)
\(\left(x+1\right)\left(y+2\right)=-9\)
\(x+1;y+2\in U\left(-9\right)\)
x+1 | 1 | -1 | 3 | -3 | 9 | -9 |
y+2 | -9 | 9 | -3 | 3 | -1 | 1 |
x | 0 | -2 | 2 | -4 | 8 | -10 |
y | -11 | 7 | -5 | 1 | -3 | -1 |
a) $xy+3x-2y-11=0$$x\left(y+3\right)-2y-6-5=0$$x\left(y+3\right)-2\left(y+3\right)=5$$\left(x-2\right)\left(y+3\right)=5$$x-2;y+3\in U\left(5\right)$
b) $xy+2x+y+11=0$
$x\left(y+2\right)+y+2+9=0$$x\left(y+2\right)+\left(y+2\right)=-9$$\left(x+1\right)\left(y+2\right)=-9$$x+1;y+2\in U\left(-9\right)$
x-2 | 1 | -1 | 5 | -5 | ||
y+3 | 5 | -5 | 1 | -1 | ||
x | 3 | 1 | 7 | -3 | ||
y | 2 | -8 | -2 | -4 | ||
x+1 | 1 | -1 | 3 | -3 | 9 | -9 |
y+2 | -9 | 9 | -3 | 3 | -1 | 1 |
x | 0 | -2 | 2 | -4 | 8 | -10 |
y | -11 | 7 | -5 | 1 |
Trần Minh Hoàng trả lời câu này hộ mình đi
a: \(\Leftrightarrow\left(x+5;y-3\right)\in\left\{\left(1;11\right);\left(11;1\right);\left(-1;-11\right);\left(-11;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(-4;14\right);\left(6;4\right);\left(-6;-8\right);\left(-16;2\right)\right\}\)
b: =>x(y-2)=-19
=>\(\left(x,y-2\right)\in\left\{\left(1;-19\right);\left(-19;1\right);\left(-1;19\right);\left(19;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(1;-17\right);\left(-19;3\right);\left(-1;21\right);\left(19;1\right)\right\}\)