Tìm a, b biết 8a=9b và (-a) +b = -3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s : 8b-9a=31
Vì \(\frac{11}{7}>\frac{a}{b}>\frac{23}{29}\)
\(8b-9a=31\)(1)
\(\Rightarrow9a=8b-31\)
\(a=\frac{8b-31}{9}\)vì \(a\in N\)
\(8b-31\ge9\)
\(\Leftrightarrow8b\ge40\Leftrightarrow b\ge5\)
\(\Rightarrow\frac{11}{7}>\frac{8b-31}{9b}>\frac{23}{29}\)
\(\Leftrightarrow\frac{11}{7}>\frac{8}{9}>\frac{23}{29}\)
Mà \(7>\frac{8}{9}-\frac{31}{9b}< \frac{11}{7}\)
\(\frac{8}{9}-\frac{11}{7}< \frac{31}{9b}\)
...... \(\frac{-43}{63}< \frac{31}{9b}\)
\(\frac{-43}{7}< \frac{31}{b}\)
\(\Leftrightarrow-43b< 31.7\)
\(b>\frac{31.7}{-43}=\frac{-217}{43}\)
\(\Rightarrow b\in N\Leftrightarrow b>0\)
Mà \(\frac{8}{9}-\frac{31}{9b}>\frac{23}{29}\Leftrightarrow\frac{8}{9}-\frac{23}{29}>\frac{31}{9b}\)
\(\Leftrightarrow\frac{25}{261}>\frac{31}{9b}\Rightarrow25.9b>31.261\)
\(\Leftrightarrow b>\frac{31.261}{25.9}=\frac{899}{25}=35,9\)
Vậy \(5< b< \frac{899}{25}\)
\(\Rightarrow5< b< 35\)
Đến đây bạn lập bảng .
\(\hept{\begin{cases}\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\\8a-9b=31\end{cases}}\)
\(=>\hept{\begin{cases}17a>11b\\29a< 23b\end{cases}}\)
\(=>8a>5\frac{3}{17}b\)
\(-11\frac{8}{23}a< -9b\)
\(=>8a-11\frac{8}{23}a< 8a-9b=31< 8a+8a\)
\(=>-3\frac{8}{23}a< 31< 16a\)
\(=>0< a< 0,5\)
Vậy ko có số tự nhiên a,b nào thỏa mãn đề bài
hôm nay mình thi, mình tìm ra là a=41; b=50, bn mik ra là a=17; b=23. Cả 2 đều đúng sao ý
\(8a=9b\Rightarrow\frac{a}{9}=\frac{b}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{b-a}{8-9}=\frac{-3}{-1}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{9}=3\\\frac{b}{8}=3\end{cases}}\Rightarrow\hept{\begin{cases}a=27\\b=24\end{cases}}\)
Vậy......