Cho 2 số dương a và b
CM a/b^2 + b/a^2 + 16/ a+b >= 5(1/a + 1/b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có:\(a>2b\)
\(\Rightarrow a-b>2b-b\)
\(\Rightarrow a-b>b\)
\(\Rightarrow\frac{a-b}{b}>1\left(ĐPCM\right)\)
Áp dụng bất đửng thức cô si cho các cặp số dương ta có:
\(\left\{{}\begin{matrix}ab+\dfrac{a}{b}\ge2\sqrt{ab\times\dfrac{a}{b}}=2a\\ab+\dfrac{b}{a}\ge2\sqrt{ab\times\dfrac{b}{a}}=2b\\\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}\times\dfrac{b}{a}}=2\end{matrix}\right.\)
cộng theo vế 3 bđt trên ta được
\(2\left(ab+\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2\left(a+b+1\right)\)
\(\Leftrightarrow ab+\dfrac{a}{b}+\dfrac{b}{a}\ge a+b+1\)
Trịnh Thị Giang đề sai hay bài bạn sai
mình không biết ai đúng ai sai nhưng phải có một cái sai
Câu hỏi của Lê Văn Hoàng - Toán lớp 9 - Học toán với OnlineMath
Áp dụng AM-GM:
\(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\dfrac{3}{\sqrt[3]{\left(ab+bc\right)\left(bc+ac\right)\left(ac+ab\right)}}\ge\dfrac{3}{\dfrac{1}{3}.2\left(ab+bc+ca\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)