K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{xyz}\)

\(=\dfrac{\left(-z\right)^3+z^3-3xy\left(-z\right)}{xyz}=3\)

24 tháng 3 2016

\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

dung hằng đẳng thức đẹp :\(x^3+y^3+z^3=3xyz\) với \(x+y+z=0\)

\(\Rightarrow xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\frac{3}{xyz}=3\)

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

16 tháng 10 2023

Ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Rightarrow\dfrac{1}{z}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\left(\dfrac{1}{z}\right)^3=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3\)

\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x^3}+3\cdot\dfrac{1}{x^2}\cdot\dfrac{1}{y}+3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y^2}+\dfrac{1}{y^3}\right)\)

\(\Rightarrow\dfrac{1}{z^3}=-\dfrac{1}{x^3}-\dfrac{3}{x^2y}-\dfrac{3}{xy^2}-\dfrac{1}{y^3}\)

\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot-\dfrac{1}{z}\)

\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=3\cdot\dfrac{1}{xyz}\)

\(\Rightarrow xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)

\(\Rightarrow\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=3\)

\(\Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

Vậy \(A=3\)

12 tháng 5 2022

\(x,y,z\ne0\)

-Ta c/m: -Với \(a+b+c=0\) thì: \(a^3+b^3+c^3-3abc=0\)

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\left(đpcm\right)\)

-Quay lại bài toán:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

\(A=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{y^3z^3+z^3x^3+x^3y^3}{x^2y^2z^2}=\dfrac{y^3z^3+z^3x^3+x^3y^3-3x^2y^2z^2+3x^2y^2z^2}{x^2y^2z^2}=\dfrac{\left(xy+yz+zx\right)\left[x^2y^2+y^2z^2+z^2x^2-xyz\left(x+y+z\right)\right]}{x^2y^2z^2}+3=\dfrac{0.\left[x^2y^2+y^2z^2+z^2x^2-xyz\left(x+y+z\right)\right]}{x^2y^2z^2}+3=3\)