K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

m và n thuộc N*

4 tháng 12 2021

Tham khảo:D

 

 Cách 1: 
2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

Cách 2: 
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2. 
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b. 
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2. 

Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.

4 tháng 12 2021

x,y ở đâu :))?

4 tháng 12 2021

2m-2n=256
2m-2n=28
m-n=8

10 tháng 2 2018

khổ qua hya là xem trên mạng ý

19 tháng 9

a cần tìm các số nguyên dương \(m\)\(n\) sao cho:

\(A = \frac{3 m - 1}{2 n} \text{v} \overset{ˋ}{\text{a}} B = \frac{3 n - 1}{2 m}\)

đều là các số nguyên dương.


Bước 1: Phân tích điều kiện

Ta có:

  • \(A = \frac{3 m - 1}{2 n} \in \mathbb{Z}^{+}\)
  • \(B = \frac{3 n - 1}{2 m} \in \mathbb{Z}^{+}\)

Suy ra:

  • \(2 n \mid \left(\right. 3 m - 1 \left.\right)\) hay \(3 m - 1 \equiv 0 \left(\right. m o d 2 n \left.\right)\)
  • \(2 m \mid \left(\right. 3 n - 1 \left.\right)\) hay \(3 n - 1 \equiv 0 \left(\right. m o d 2 m \left.\right)\)

Bước 2: Dùng thử vài giá trị nhỏ

Thử với \(m = 1\):

  • \(A = \frac{3 \left(\right. 1 \left.\right) - 1}{2 n} = \frac{2}{2 n} = \frac{1}{n}\) → không nguyên trừ khi \(n = 1\)
    • Nếu \(m = 1 , n = 1\)\(A = \frac{2}{2} = 1\), \(B = \frac{2}{2} = 1\)

Thử \(m = 2\):

  • \(A = \frac{6 - 1}{2 n} = \frac{5}{2 n}\)
    • Không nguyên trừ khi \(2 n = 1\) hoặc 5 ⇒ không có \(n \in \mathbb{Z}^{+}\) phù hợp

Thử \(m = 3\):

  • \(A = \frac{9 - 1}{2 n} = \frac{8}{2 n} = \frac{4}{n}\)
    • Để nguyên ⇒ \(n \in \left{\right. 1 , 2 , 4 \left.\right}\)

Thử với các giá trị \(n\) trên:

  • \(n = 1\): \(B = \frac{3 \left(\right. 1 \left.\right) - 1}{2 \cdot 3} = \frac{2}{6} = \frac{1}{3}\)
  • \(n = 2\): \(B = \frac{6 - 1}{6} = \frac{5}{6}\)
  • \(n = 4\): \(B = \frac{12 - 1}{6} = \frac{11}{6}\)

Không thỏa mãn.


Quay lại với cặp đúng đã tìm được:

\(\left(\right. m , n \left.\right) = \left(\right. 1 , 1 \left.\right) \Rightarrow A = 1 , B = 1 (đ \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{nguy} \hat{\text{e}} \text{n}\&\text{nbsp};\text{d}ưo\text{ng})\)


Bước 3: Giả sử \(A = a , B = b \in \mathbb{Z}^{+}\)

Từ:

\(\frac{3 m - 1}{2 n} = a \Rightarrow 3 m - 1 = 2 a n \Rightarrow 3 m = 2 a n + 1 \Rightarrow m = \frac{2 a n + 1}{3}\)

Tương tự:

\(\frac{3 n - 1}{2 m} = b \Rightarrow 3 n - 1 = 2 b m \Rightarrow 3 n = 2 b m + 1 \Rightarrow n = \frac{2 b m + 1}{3}\)

Thế \(m\) từ biểu thức 1 vào biểu thức 2:

\(n = \frac{2 b \cdot \left(\right. \frac{2 a n + 1}{3} \left.\right) + 1}{3} = \frac{\frac{4 a b n + 2 b}{3} + 1}{3} = \frac{4 a b n + 2 b + 3}{9}\)

Đặt \(x = n\), phương trình:

\(x = \frac{4 a b x + 2 b + 3}{9} \Rightarrow 9 x = 4 a b x + 2 b + 3 \Rightarrow x \left(\right. 9 - 4 a b \left.\right) = 2 b + 3\)

\(x = \frac{2 b + 3}{9 - 4 a b}\)

Để \(x = n \in \mathbb{Z}^{+}\), mẫu phải chia hết tử ⇒ xét vài giá trị \(a , b\)


Thử \(a = 1 , b = 1\):

\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{5} = 1 \Rightarrow n = 1 \Rightarrow m = \frac{2 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right) + 1}{3} = \frac{3}{3} = 1\)

✅ Đúng rồi.


Các cặp khác?

Thử \(a = 2 , b = 1\):

\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 2 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{9 - 8} = \frac{5}{1} = 5 \Rightarrow n = 5 \Rightarrow m = \frac{2 \left(\right. 2 \left.\right) \left(\right. 5 \left.\right) + 1}{3} = \frac{21}{3} = 7\)

Kiểm tra:

  • \(A = \frac{3 \cdot 7 - 1}{2 \cdot 5} = \frac{20}{10} = 2\)
  • \(B = \frac{3 \cdot 5 - 1}{2 \cdot 7} = \frac{14}{14} = 1\)

✅ Đúng.


Kết luận:

Các cặp \(\left(\right. m , n \left.\right)\) nguyên dương sao cho cả hai biểu thức đều nguyên dương gồm:

  • \(\left(\right. 1 , 1 \left.\right)\)
  • \(\left(\right. 7 , 5 \left.\right)\)

Bạn có thể tìm thêm bằng cách thử các giá trị \(a , b \in \mathbb{Z}^{+}\) nhỏ, dùng công thức:

\(n = \frac{2 b + 3}{9 - 4 a b} , m = \frac{2 a n + 1}{3}\)

19 tháng 2 2019

tìm các số nguyên dương m,n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cùn là các số nguyên dương