Cho tam giác ABC M và N là trung điểm của hai cạnh AB và AC nối M với N,trên tia đối của tia NM xác định điểm P sao cho NP=MN.Nối P với C
a,Chứng minh:BC=2MN
dùng tính chất tam giác bằng nhau nha, kiến thức lớp 7 đó. CẢM ƠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ CM: tam giác NAM=tam giác NCP (c.g.c)
=>Góc MAN = Góc NCP
Mà 2 góc nằm ở vị trí so le trong
=>đpcm
b/Vì tam giác NAM= tam giác NCP(cmt)
=>AM=CP (1)
Mà AM=BM(gt) (2)
Từ (1) và (2) suy raBM=CP
c/ Nối B với P
CM Tam giác BMP= tam giác PCB(c.g.c)
=>BC=MP(cạnh tương ứng) (3)
Mà 2MN=MP (4)
Từ (3) và (4) suy ra đpcm
a) Xét tam giác ANM và tam giác CNP có:
AN=CN( vì N là trung điểm của AC)
góc ANM= góc CNP ( đối đỉnh)
NM=NP
=> tam giác ANM=tam giác CNP ( c.g.c)
=> góc A= góc NCP
mà chúng là 2 góc so le trong => CP//AB
b) theo a) tam giác ANM=tam giác CNP
=> AM=CP
Mà AM= MB ( vì M là trung điểm của AB)
=> CP=MB
c) Vì M là trung điểm của AB, N là trung điểm của AC => MN là đường trung bình của tam giác ABC
=> BC=2MN
a) - Xét tam giác CPN và tam giác AMN có:
MN=NP (gt)
Góc ANM=CNP (2 góc đối đỉnh)
AN=NC (gt)
Do đó: tam giác ANM= tam giác CNP (c.g.c)
- Vì tam giác ANM= tam giác CNP nên góc ANM = góc CNP ( 2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên AB//CP
b) Vì tam giác ANM= tam giác CNP( cmt) nên AM =CP (2 cạnh tương ứng)
Mà AM=MB (vì điểm M là trung điểm của AB) nên CP= MB
c) - Ta có: CP= AB ( câu a)
=> Góc BMC= góc MCP (2 góc so le trong)
- Xét tam giác MBC và tam giác CPM có:
MB=PC ( câu b)
MC là cạnh chung
Góc BMC =góc MCD (cmt)
Do đó: tam giác MBC= tam giác CPM (c.g.c)
=> PM= BC ( 2 cạnh tương ứng)
Mà MN= NP hay MP= 2MN
Vậy BC=2MN
mình hướng dẫn nhé
a) ta chứng minh \(\Delta NPC=\Delta NMA\)
có \(NP=MN\); \(AN=NC\); \(\widehat{ANM}=\widehat{CNP}\) ( 2 góc đối đỉnh)
\(\Rightarrow AM=PC\)( 2 cạnh tương ứng)
mà \(AM=MB\) \(\Rightarrow PC=MB\) (Đpcm)
b) ta có: \(\Delta NMA=\Delta NPC\)
\(\Rightarrow\widehat{NCP}=\widehat{NAM}\) ( 2 góc tương ứng)
\(\Rightarrow AM\) song song \(PC\) ( 2 góc ở vị trí so le trong)
hay \(AB\) sogn song \(PC\)
c) ta có \(MN\) là đường trung bình của \(\Delta ABC\)
\(\Rightarrow BC=2MN\) và \(BC\)song song \(BC\)
a) Xét ∆AMN và ∆CQN có:
AN = NC (do N là trung điểm của AC)
∠ANM = ∠CNQ (đối đỉnh)
NM = NQ (gt)
⇒ ∆AMN = ∆CQN (c-g-c)
b) Do ∆AMN = ∆CQN (cmt)
⇒ ∠MAN = ∠NCQ (hai góc tương ứng)
Mà ∠MAN và ∠NCQ là hai góc so le trong
⇒ AM // CQ
⇒ MB // CQ
c) Do ∆AMN = ∆CQN (cmt)
⇒ AM = CQ (hai cạnh tương ứng)
Mà AM = MB (do M là trung điểm của AB)
⇒ MB = CQ
Do BM // CQ (cmt)
⇒ ∠BMC = ∠QCM (so le trong)
Xét ∆BMC và ∆QCM có:
BM = CQ (cmt)
∠BMC = ∠QCM (cmt)
CM là cạnh chung
⇒ ∆BMC = ∆QCM (c-g-c)
⇒ BC = MQ (hai cạnh tương ứng)
Do NM = NQ (gt)
⇒ MN = 1/2 MQ
Mà BC = MQ (cmt)
⇒ MN = 1/2 BC
a)Xét tam giác abc có am=bm;an=cn
=>mn là đường trung bình của tam giác abc
=>mn//bc;mn=1/2bc
mà mp =2mn=>mp=bc
b)tứ giác mpbc có
mp=bc;mp//bc
=>mpcb là hình bình hành=>cp//mb
c)mpcb là hình bình hành=>mb=cp