Tìm x, y biết x2 -2xy+2y2 -2x-2y-5=0. Tính P=\(\frac{xy-x+y+13}{4xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 2xy + 2y2 - 2x + 6y + 13 = 0
<=> x2 - 2x(y + 1) + 2y2 + 6y + 13 = 0
<=> x2 - 2x(y + 1) + (y + 1)2 + y2 + 4y + 12 = 0
<=> (x - y - 1)2 + (y + 1)2 + (y + 2)2 + 8 = 0
Vô lí do VT > 0 vs mọi x; y
=> Ko tìm đc gtri của N
a.
\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)
Do \(\left(x-2y\right)^2\ge0;\forall x;y\)
\(\Rightarrow\left(x-2\right)^2\le8\)
\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)
TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)
\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)
TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên
TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):
- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)
Vậy pt có các cặp nghiệm là:
\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)
b.
\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)
Lý luận tương tự câu a ta được
\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)
Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn
Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)
- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)
- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)
\(a)xy+3x-2y=11\)
\(\Leftrightarrow xy+3x-2y-6=5\)
\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)
\(b)2x^2-2xy+x-y=12\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)
\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)
\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)
\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
Vì 2x+1 luôn lẻ
\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Lời giải:
Ta có:
\(x^2-2x+2y^2-2x-2y+5=0\)
\(\Leftrightarrow (x^2+y^2+1-2xy-2x+2y)+(y^2-4y+4)=0\)
\(\Leftrightarrow (x-y-1)^2+(y-2)^2=0(*)\)
Vì \((x-y-1)^2, (y-2)^2\geq 0, \forall x,y\in\mathbb{Z}\) nên $(*)$ xảy ra khi và chỉ khi:
\(\left\{\begin{matrix} (x-y-1)^2=0\\ (y-2)^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x-y-1=0\\ y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3\\ y=2\end{matrix}\right.\)
Do đó thay các giá trị cụ thể của $x,y$ vào biểu thức $P$ thì:
\(P=1\)
a: \(=x-\dfrac{3}{2}+2y\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)