cho tam giac ABC co AB=a , BC=a\(\sqrt{7}\)va goc A= 120 do
a) giai tam giac
b)tinh ma, hb, R,r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: D nằm trên đường trung trực của AB
nên DA=DB
=>ΔDAB cân tại D
Ta có: E nằm trên đường trung trực của AC
nên EA=EC
=>ΔEAC cân tại E
a: Xét ΔBAC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(\dfrac{a^2+AC^2-7a^2}{2\cdot a\cdot AC}=\dfrac{-1}{2}\)
=>\(2\left(AC^2-6a^2\right)=-2a\cdot AC\)
=>\(AC^2-6a^2=AC\cdot-a\)
=>\(AC^2+AC\cdot a-6a^2=0\)
=>AC^2+3*AC*a-2*AC*a-6a^2=0
=>AC(AC+3a)-2a(AC+3a)=0
=>AC=2a
Xét ΔBAC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}=\dfrac{a^2+7a^2-4a^2}{2\cdot a\cdot a\sqrt{7}}=\dfrac{2\sqrt{7}}{7}\)
nên góc B=41 độ
=>góc C=180-120-41=60-41=19 độ
b: \(m_A=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{a^2+4a^2}{2}-\dfrac{7a^2}{4}}=\dfrac{\sqrt{3}}{2}\cdot a\)
\(\dfrac{BC}{sinA}=2\cdot R\)
=>\(2\cdot R=\dfrac{a\sqrt{7}}{sin120}=a\sqrt{7}\cdot\dfrac{2}{\sqrt{3}}\)
=>\(R=a\sqrt{\dfrac{7}{3}}\)