tính
M =\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}=\sqrt{2^8}=\sqrt{16^2}=16\)
\(\dfrac{10}{11}+\dfrac{4}{11}:4-\dfrac{1}{8}=\dfrac{10}{11}+\dfrac{1}{11}-\dfrac{1}{8}=1-\dfrac{1}{8}=\dfrac{8}{8}-\dfrac{1}{8}=\dfrac{7}{8}\)
Giải:
\(M=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(\Leftrightarrow M=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}\)
\(\Leftrightarrow M=\dfrac{4^{10}\left(2^{10}+1\right)}{4^4.2^4\left(2^{10}+1\right)}\)
\(\Leftrightarrow M=\dfrac{4^6}{2^4}\)
\(\Leftrightarrow M=\dfrac{2^{12}}{2^4}\)
\(\Leftrightarrow M=2^8=256\)
Vậy ...
\(M=\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(M=\sqrt{\dfrac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}\)
\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(M=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}\)
\(M=\sqrt{2^8}=16\)
a: \(\dfrac{15}{8}-\dfrac{13}{8}=\dfrac{15-13}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)
b: \(\dfrac{7}{15}-\dfrac{2}{15}=\dfrac{7-2}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
c: \(\dfrac{11}{12}-\dfrac{2}{12}=\dfrac{11-2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
d: \(\dfrac{19}{7}-\dfrac{5}{7}=\dfrac{19-5}{7}=\dfrac{14}{7}=2\)
\(M=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(M=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}\)
\(M=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(M=\dfrac{4^{15}+4^{10}}{4^6+4^{11}}\)
\(M=\dfrac{4^{10}\left(4^5+1\right)}{4^6\left(4^5+1\right)}\)
\(M=\dfrac{4^{10}}{4^6}\)
\(M=4^4=256\)
M=256
N=15^15/3^15
Thông cảm vì mình ko giải ra chi tiết vì nó lâuuuu
N = \(\dfrac{3^{30}.5^{30}}{3^{30}.5^{15}}=\dfrac{5^{30}}{5^{15}}=5^{15}\)
\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=2^8=256\)
\(A=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=2^8\)
Vậy...