Cho x+y+z=1 Tìm max S=\(\frac{x}{x+zy}+\frac{y}{y+xz}+\frac{z}{z+xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(xy+yz+zx=4xyz\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
\(P=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)
\(\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{2}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)
\(\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
áp dụng cô si sháp cho 4 số ta được :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\) Luôn đúng , ( tự chứng minh )
\(\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\frac{1}{a+b+c+d}\) luôn luôn đúng
áp dụng vào P ta được như sau
\(\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) luôn đúng :))
\(\frac{1}{x+y+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\frac{1}{x+y+z+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
Cộng tất cả vào ta được
\(P\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)\Leftrightarrow P\le\frac{1}{4}\left(x+y+z\right)\)
Thèo đề \(xy+yz+xz=4xyz\Leftrightarrow xy+yz+xz=xyz+xyz+xyz+xyz\)
Tao cũng éo hiểu tại sao nó = nhau được
1 đề sai , 2 tao sai thế thôi
Cod : (a-b)^2 >= 0
<=> a^2+b^2 >= 2ab
<+> a^2+b^2+2ab >= 4ab
<=> (a+b)^2 >= 4ab
Với a,b > 0 thì chia cả 2 vế trên cho ab.(a+b) ta được :
a+b/ab >= 4/a+b
<=> 1/a+1/b >= 4/a+b
<=> 1/a+b <= 1/4 . (1/a+1/b)
Xét : xy/z+1 = xy/x+y+z+z = xy/(x+z)+(y+z) = xy.[1/(x+z)+(y+z)] <= xy/4 . (1/x+z + 1/y+z) = 1/4. (xy/x+z+xy/y+z)
Tương tự : yz/x+1 <= 1/4.(yz/x+y + yz/x+z)
xz/y+1 <= 1/4.(xz/y+x + xz/y+z)
=> M <= 1/4 .[ (xy/x+z + yz/x+z) + (xy/y+z + xz/y+z) + (yz/x+y + xz/y+z ) = 1/4.(y+x+z) = 1/4 . 1 = 1/4
Dấu "=" xảy ra <=> x=y=z và x+y+z=1
<=> x=y=z=1/3
Vậy Max của M = 1/4 <=> x=y=z=1/3
\(x^2+xy+y^2=\left(x+y\right)^2-xy\ge\left(x+y\right)^2-\frac{1}{4}\left(x+y\right)^2=\frac{3}{4}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\)
Vậy:
\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(x+y\right)^2}{1+4xy}+\frac{\left(y+z\right)^2}{1+4yz}+\frac{\left(z+x\right)^2}{1+4zx}\right]\)
\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(2x+2y+2z\right)^2}{3+4\left(xy+yz+zx\right)}\right]\ge\frac{\sqrt{3}}{2}.\frac{9}{3+\frac{4}{3}\left(x+y+z\right)^2}=\frac{3\sqrt{3}}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
\(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\) mà sao thế vào là \(\frac{\sqrt{3}}{2}\left(x+y\right)^2\) vậy ạ?