K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

\(\dfrac{1+a+b}{2}\ge\dfrac{1+a+b+ab}{2+a+b}\)

\(\Leftrightarrow\left(1+a+b\right)\left(2+a+b\right)\ge2\left(1+a+b+ab\right)\)

\(\Leftrightarrow2+a+b+2a+a^2+ab+2b+ab+b^2\ge2+2a+2b+2ab\)

\(\Leftrightarrow a^2+b^2+2ab+3a+3b+2\ge2ab+2a+2b+2\)

\(\Leftrightarrow a^2+b^2+a+b\ge0\)

9 tháng 9 2018

Với a, b, c là các số nguyên dương

=> a + b > 0 ; b + c > 0 ; c + a > 0

Áp dụng bất đẳng thức Cauchy cho hai số a + b và c không âm, ta có:

\(\left(a+b\right)+c\ge2\sqrt[]{\left(a+b\right)c}\)

\(\Rightarrow1\ge\dfrac{2\sqrt[]{\left(a+b\right)c}}{a+b+c}\)

\(\Rightarrow1\ge\dfrac{2\sqrt{c}\sqrt[]{\left(a+b\right)c}}{\sqrt[]{c}\left(a+b+c\right)}\)

\(\Rightarrow1\ge\dfrac{2c\sqrt[]{a+b}}{\sqrt[]{c}\left(a+b+c\right)}\)

\(\Rightarrow\sqrt[]{c}\left(a+b+c\right)\ge2c\sqrt[]{a+b}\)

\(\Rightarrow\sqrt[]{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\) (1)

Chứng minh tương tự \(\Rightarrow\sqrt[]{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\) (2) ;\(\sqrt[]{\dfrac{b}{a+c}}\ge\dfrac{2b}{a+b+c}\) (3)

Cộng hai vế của (1), (2), (3), ta được:

\(\sqrt[]{\dfrac{a}{b+c}}+\sqrt[]{\dfrac{b}{a+c}}+\sqrt[]{\dfrac{c}{a+b}}\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=2\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a+b=c\\a+c=b\\b+c=a\end{matrix}\right.\)

Kết hợp với điều kiện a, b, c là các số nguyên dương => Không thể xảy ra dấu " = "

=> ĐPCM

9 tháng 9 2018

a,b,c >0 nua nhe

15 tháng 11 2016

Moi hoc lop 6 a!

Nen chang tra loi dc dau!

17 tháng 3 2018

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)