K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

loading... loading... 

a: ΔOCD cân tại O

mà OH là đường cao

nên OH là phân giác của góc COD

Xét ΔOCM và ΔODM có

OC=OD

góc COM=góc DOM

OM chung

Do đo: ΔOCM=ΔODM

=>góc ODM=90 độ

=>DM là tiếptuyến của (O)

b: Xét ΔMCF và ΔMEC có

góc MCF=góc MEC

góc CMF chung

Do đó: ΔMCF đồng dạng với ΔMEC

=>MC/ME=MF/MC

=>MC^2=ME*MF=MH*MO

1: góc AKP+góc AHP=180 độ

=>AKPH nội tiếp

2: góc KAC=1/2*sđ cung KC

góc OMB=góc CBK(MH//CB)

=>góc OMB=góc KAC

26 tháng 12 2023

a: Xét tứ giác EHOC có

\(\widehat{EHO}+\widehat{ECO}=90^0+90^0=180^0\)

=>EHOC là tứ giác nội tiếp

=>E,H,O,C cùng thuộc một đường tròn

b: Sửa đề: ΔABC vuông

Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔABC vuông tại B

c: ΔABC vuông tại B

=>AB\(\perp\)BC

Ta có: AB\(\perp\)BC

OM\(\perp\)AB

Do đó: OM//BC

Ta có: \(\widehat{ECB}+\widehat{E}=90^0\)(ΔBCE vuông tại B)

\(\widehat{E}+\widehat{CAB}=90^0\)(ΔCAE vuông tại C)

Do đó: \(\widehat{ECB}=\widehat{CAB}\)

mà \(\widehat{CAB}=\widehat{OBH}\)(ΔOBA cân tại O)

và \(\widehat{OBH}=\widehat{OMB}\left(=90^0-\widehat{HOB}\right)\)

nên \(\widehat{ECB}=\widehat{OMB}\)

Xét ΔBEC vuông tại B và ΔBOM vuông tại B có

\(\widehat{BCE}=\widehat{BMO}\)

Do đó: ΔBEC đồng dạng với ΔBOM

=>\(\dfrac{BE}{BO}=\dfrac{BC}{BM}\)

=>\(BE\cdot BM=BC\cdot BO\)

26 tháng 12 2023

a: Xét tứ giác EHOC có

\(\widehat{EHO}+\widehat{ECO}=90^0+90^0=180^0\)

=>EHOC là tứ giác nội tiếp

=>E,H,O,C cùng thuộc một đường tròn

b: Ta có: ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

Xét ΔMAB có

MH là đường cao

MH là đường trung tuyến

Do đó: ΔMAB cân tại M

c: ΔABC vuông tại B

=>AB\(\perp\)BC

Ta có: AB\(\perp\)BC

OM\(\perp\)AB

Do đó: OM//BC

Ta có: \(\widehat{ECB}+\widehat{E}=90^0\)(ΔBCE vuông tại B)

\(\widehat{E}+\widehat{CAB}=90^0\)(ΔCAE vuông tại C)

Do đó: \(\widehat{ECB}=\widehat{CAB}\)

mà \(\widehat{CAB}=\widehat{OBH}\)(ΔOBA cân tại O)

và \(\widehat{OBH}=\widehat{OMB}\left(=90^0-\widehat{HOB}\right)\)

nên \(\widehat{ECB}=\widehat{OMB}\)

Xét ΔBEC vuông tại B và ΔBOM vuông tại B có

\(\widehat{BCE}=\widehat{BMO}\)

Do đó: ΔBEC đồng dạng với ΔBOM

=>\(\dfrac{BE}{BO}=\dfrac{BC}{BM}\)

=>\(BE\cdot BM=BC\cdot BO\)

18 tháng 12 2023

a: Xét (O) có

OM là bán kính

EF\(\perp\)OM tại M

Do đó: EF là tiếp tuyến của (O)

b: Xét (O) có

EM,EA là các tiếp tuyến

Do đó: EM=EA

Xét (O) có

FM,FB là các tiếp tuyến

Do đó: FM=FB

Ta có: EF=EM+MF

mà EM=EA và FM=FB

nên EF=EA+FB