Cho tam giác ABC có \(\widehat{B}=\widehat{A}+2\widehat{C}\) và ba cạnh của tam giác là ba số tự nhiên liên tiếp . Tìm ba cạnh của tam giác đó .
Help me !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như mình đã nhắc nhở bạn một lần về việc không đăng quá nhiều lần 1 bài toán nhưng bạn vẫn làm vậy. Lần sau mình xin phép sẽ xóa hết nhé!
Lời giải:
$3\widehat{A}+2\widehat{B}=180^0$
$\Rightarrow \widehat{A}+\widehat{B}< 90^0\Rightarrow \widehat{C}>90^0$
Do đó trong tam giác $ABC$ thì $AB$ là cạnh lớn nhất. Trên $AB$ lấy $M$ sao cho $AM=AC$
Ta có:
$\widehat{AMC}=\frac{180^0-\widehat{A}}{2}$
$\Rightarrow \widehat{BMC}=180^0-\frac{180^0-\widehat{A}}{2}=180^0-\frac{3\widehat{A}+2\widehat{B}-\widehat{A}}{2}$
$=180^0-(\widehat{A}+\widehat{B})=\widehat{ACB}$
Do đó:
$\triangle ACB\sim \triangle CMB$ (g.g)
$\Rightarrow \frac{AB}{CB}=\frac{CB}{MB}$
$\Rightarrow AB.MB=BC^2$
$\Leftrightarrow AB(AB-AM)=BC^2$
$\Leftrightarrow AB^2-AB.AC=BC^2$.
Nếu $(AB,BC,AC)=(k, k+2, k+4)$ thì:
$k^2-k(k+4)=(k+2)^2$
$\Leftrightarrow k^2+8k+4=0$
$\Leftrightarrow k=-4\pm 2\sqrt{3}$ (loại vì $k$ tự nhiên)
Nếu $(AB, BC, AC)=(k+2, k, k+4)$ thì:
$(k+2)^2-(k+2)(k+4)=k^2$
$\Leftrightarrow k^2+2k+4=0$
$\Leftrightarrow (k+1)^2=-3< 0$ (vô lý)
Vậy không tìm được chu vi.
Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \)
Mà số đo ba góc \(\widehat A,\widehat B,\widehat C\) của tam giác ABC tỉ lệ với 5;6;7 nên \(\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7} = \dfrac{{\widehat A + \widehat B + \widehat C}}{{5 + 6 + 7}} = \dfrac{{180^\circ }}{{18}} = 10^\circ \\ \Rightarrow \widehat A = 10^\circ .5 = 50^\circ \\\widehat B = 10^\circ .6 = 60^\circ \\\widehat C = 10^\circ .7 = 70^\circ \end{array}\)
Vậy số đo 3 góc \(\widehat A,\widehat B,\widehat C\) lần lượt là \(50^\circ ;60^\circ ;70^\circ \)
gọi a,b,c là 3 cạnh của tam giác.
Ta có :\(cot\left(\dfrac{A}{2}\right)+cot\left(\dfrac{C}{2}\right)=2cot\left(\dfrac{B}{2}\right)\) <=> \(\dfrac{cot\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right)}+\dfrac{cos\left(\dfrac{C}{2}\right)}{sin\left(\dfrac{C}{2}\right)}=\dfrac{2.cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)
<=> \(\dfrac{sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{A}{2}\right)+cos\left(\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{C}{2}\right)}\)
<=> \(\dfrac{sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\) <=> \(\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)
<=> \(sin\left(\dfrac{B}{2}\right).cos\left(\dfrac{B}{2}\right)=2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{B}{2}\right)\)
<=> \(\dfrac{1}{2}sinB=\left[cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)-cos\left(\dfrac{A}{2}+\dfrac{C}{2}\right)\right]cos\left(\dfrac{B}{2}\right)\)
<=>\(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right).cos\left(\dfrac{B}{2}\right)-sin\left(\dfrac{B}{2}\right)cos\left(\dfrac{B}{2}\right)\)
<=> \(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)-\dfrac{1}{2}sinB\)
<=> sinB = \(\dfrac{1}{2}\left(sinA+sinC\right)\) <=> \(2sinB=sinA+sinC\)
<=> \(2.\dfrac{b}{2R}=\dfrac{a}{2R}+\dfrac{c}{2R}\)
<=> a+c =2b
=> 3 cạnh của tam giác tạo thành cấp số cộng.
Hình tự vẽ
Dễ dàng cm:AC lớn nhất.
Trên AC lấy D sao cho \(\widehat{CBD}=\widehat{CAB}\)
\(\Rightarrow\Delta BCD\sim\Delta ACB\left(g.g\right)\)
\(\Rightarrow BC^2=AC.CD=AC\left(AC-AD\right)\)(1)
Lại có:\(\widehat{B}=\widehat{A}+2\widehat{C}\)
\(\Rightarrow\widehat{DBA}=90^0-\dfrac{\widehat{A}}{2}\)
\(\Rightarrow\Delta ABD\) cân tại A
\(\Rightarrow\left(1\right)\Leftrightarrow BC^2=AC\left(AC-AB\right)\)
Đặt ẩn giải tiếp