Tìm số tự nhiên n sao cho 3n + 13 là bội của n-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+13 là bội của n-3 <=> 3n-9+22 là bội của n-3 <=> 3(n-3)+22 là bội của n-3
mà 3(n-3) là bội của n-3 <=> 22 là bội của n-3 <=> n-3\(\inƯ\left(22\right)=\left\{-22;-11;-2;-1;1;2;11;22\right\}\)
<=>\(n\in\left\{-19;-8;1;2;4;5;14;25\right\}\)
Vì n là số tự nhiên nên \(n\in\left\{1;2;4;5;14;25\right\}\)
Ta có :
3n+5 là bội của 2n-1
\(\Rightarrow\)3n+5\(⋮\)2n+1
\(\Rightarrow\)2(3n+5)\(⋮\)2n+1
\(\Rightarrow\)6n+10\(⋮\)2n+1
\(\Rightarrow\)6n+3-13\(⋮\)2n+1
\(\Rightarrow\)3(2n+1)-13\(⋮\)2n+1
Vì 3(2n+1)\(⋮\)2n+1
\(\Rightarrow\)13\(⋮\)2n+1
\(\Rightarrow\)2n+1\(\in\)Ư(13)
2n-1 | n |
1 | -1 |
-1 | 0 |
13 | 7 |
-13 | -6 |
Vậy n\(\in\){1; 0; 7; -6)
Chào Xuân Đức, dạng toán này rất hay và nhiều bạn cũng đã hỏi.
Đức tham khảo cách làm ở đây nhé: https://olm.vn/hoi-dap/question/654053.html
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
3n+14 là bội của 3n-2
=>\(3n+14⋮3n-2\)
=>\(3n-2+16⋮3n-2\)
=>\(16⋮3n-2\)
mà 3n-2>=-2 với mọi số tự nhiên n
nên \(3n-2\in\left\{-2;-1;1;2;4;8;16\right\}\)
=>\(3n\in\left\{0;1;3;4;6;10;18\right\}\)
=>\(n\in\left\{0;\dfrac{1}{3};1;\dfrac{4}{3};2;\dfrac{10}{3};6\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1;2;6\right\}\)
a/ nếu là tìm x thuộc Z thi giải như sau
n+5 chia hết cho n-2
mà n-2 chia hết cho n-2
=> [n+5] - [n-2] chia hết cho n-2
=> 7 chia hết cho n-2
Ta có bảng :
n-2 | -1 | -7 | 1 | 7 |
n | 1 | -5 | 3 | 9 |
Vậy ..........
b/
2n+1 chia hết cho n-5
n-5 chia hết cho n-5
=> 2.[n-5] chia hết cho n-5 => 2n -10 chia hết cho n-5
=> [2n+1] -[2n-10] chia hết cho n-5
=> 11 chia hết cho n-5
lập bảng t.tự câu a
c/ bạn xem lại đề
3n+4 thuộc BC﴾5:n+1﴿ nên 3n+4 chia hết cho n+1,
5 3n+4 chia hết cho n+1
3n+4=﴾3n+3﴿+1 mà 3n+3=3﴾n+1﴿ chia hết cho n+1 nên 1 chia hết cho n+1 nên n=0 để 3n+4 chia hết cho n+1
nếu n=0 ta có
3n+4=3.0+4=0+4=4 không chia hết cho 5
nên n thuộc rỗng để 3n+4 thuộc BC﴾n+1,5﴿
3n+4 thuộc BC(5:n+1) nên 3n+4 chia hết cho n+1,
5 3n+4 chia hết cho n+1
3n+4=(3n+3)+1 mà 3n+3=3(n+1) chia hết cho n+1 nên 1 chia hết cho n+1 nên n=0 để 3n+4 chia hết cho n+1
nếu n=0 ta có
3n+4=3.0+4=0+4=4 không chia hết cho 5
nên n thuộc rỗng để 3n+4 thuộc BC(n+1,5)
chúc bn hok tốt @_@