K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

đặt \(A=\frac{1}{3^2}+\frac{1}{5^2}+....+\frac{1}{\left(2n+1\right)^2}\)

\(A< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right).\left(2n+1\right)}\)

\(A< \frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2n+1}\right)\)

vì n lớn hơn hoặc bằng 1 => 2n+1 lớn hơn hoặc bằng 3

\(A< \frac{1}{2}.\left(1-\frac{1}{2n+1}\right)< \frac{1}{2}.\left(1-\frac{1}{3}\right)=\frac{1}{3}\)

=> \(A< \frac{1}{4}\)(đpcm)

ps:tuy nhiên ko thuyết phục lắm nhưng cái đề hơi sai đoạn n >= 1 ấy :((

nếu n=1 => 2n+1=3 => 1/3^2+...+1/3^2???

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

9 tháng 8 2019

Đặt \(A=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}\)

Ta có : \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\Leftrightarrow\left(2n+1\right)^2>2n\left(2n+2\right)\)\(\Leftrightarrow\frac{1}{\left(2n+1\right)^2}< \frac{1}{2n\left(2n+2\right)}\)

Mà \(\hept{\begin{cases}\frac{1}{3^2}< \frac{1}{2.4}\\\frac{1}{5^2}< \frac{1}{4.6}\\\frac{1}{7^2}< \frac{1}{6.8}\end{cases}}\)

\(...............\)

\(\frac{1}{\left(2n+1\right)^2}< \frac{1}{2n\left(2n+2\right)}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n\left(2n+2\right)}=B\)

\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2n+2-2n}{2n\left(2n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\)

\(=\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\Rightarrow B< \frac{1}{4}\)

\(\Rightarrow A< B< \frac{1}{4}\Rightarrow A< \frac{1}{4}\) hay đpcm

19 tháng 12 2017

\(\frac{1}{2^2}\)\(+\)\(\frac{1}{4^2}\)\(+\)\(\frac{1}{6^2}\)\(+\)..... \(+\)\(\frac{1}{\left(2n\right)^2}\)

\(\frac{1}{4}\)\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\right)< \)\(\frac{1}{4}\)\(\left(1+\frac{1}{1.2} +\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)\)

=   \(\frac{1}{4}\)\(\left(1+1-\frac{1}{n}\right)< \frac{1}{2}\)

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý