K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

\(1+2+3+4+.......+n=820\Leftrightarrow\left(n+1\right)n:2=820\Leftrightarrow\left(n+1\right)n=1640\)

\(1640=40.41\Rightarrow n=40\left(vì:n;n+1\right)\)là 2 stn liên tiếp

1 tháng 12 2018

Câu 1 hình như thiếu đề

Câu 2:

1+2+3+...+ n = 820

\(\Rightarrow\)\(\frac{\left(n+1\right)n}{2}\)= 820

\(\Rightarrow\)(n+1)n = 1640 = 41.40

\(\Rightarrow\)n = 40

Vậy n = 40

29 tháng 3 2016

Từ công thức:1+2+3+.......+n=\(\frac{n.\left(n+1\right)}{2}\)

Ta có:1+2+3.........+n=820

=>\(\frac{n.\left(n+1\right)}{2}\)=820

=>n.(n+1)=820.2

=>n.(n+1)=1640

=>n.(n+1)=40.41

=>n=40

18 tháng 1 2022

\(1+2+3+...+n=820;n\in N\)

\(\Leftrightarrow\frac{\left[\left(n+1\right)\left(n-1+1\right)\right]}{2}=820\)

\(\Rightarrow\frac{n+1}{2}=820\)

\(\Rightarrow n+1=1640\)

\(\Rightarrow n=1639\)

16 tháng 2 2019

4n+3 chia hết cho 3n-2 

<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2

<=>17 chia hết cho 3n-2

<=>3n-2 E {-1;1;17;-17}

<=> 3n E {1;3;19;-15} loại các TH n ko nguyên

=>n  E {1;-5}. Vậy.....

16 tháng 2 2019

2n+3 chia hết cho n-1

<=> 2n+3-2(n-1) chia hết cho n-1

<=>5 chia hết cho n-1

<=> n-1 E {-1;1;5;-5}

<=> n E {0;2;6;-4}

bài nào chứ mấy bài này dài ngoằng =((

25 tháng 10 2015

a) 2 + 4 + 6 + ... +  2n = 210 

1.2 + 2.2 + 2.3 + ... + 2n = 210

2.(1+2+3+...+n) = 210

1 + 2 + 3 + ... + n = 105

\(\frac{n\left(n+1\right)}{2}\)= 105

n(n+1) = 210

n(n+1) = 14.15

=> n = 14

30 tháng 7 2016

b) 1+3+5+...+(2n-1)=225

\(\frac{\left(2n-1+1\right).n}{2}\)  =225

\(\frac{2n.n}{2}\) =225

\(\frac{2.n^2}{2}\)     =225

\(n^2\) =225

Ta có: \(n^2\)  =225  = \(3^2\).\(5^2\)\(\left(15\right)^2\)

=> n = 15

10 tháng 6 2015

bạn phân tích ra ruj rút gọn 

10 tháng 6 2015

A=x(x + 2y) - 2x (3x - y) + 5 (x2 - xy) - (20 - xy)

=x2+2xy-6x2+2xy+5x2-5xy-20+xy

=-20

B=x2 (2x - 3) -x (2x2 + 5) + 3x2 + 5x + 20

=2x3-3x2-2x3+-5x+3x2+5x+20

Câu cuối bạn viết ko rõ

a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)

b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)

c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)

\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)

d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)

hay \(N=y^2-x^2\)