Tính giá trị của P=\(a^3+b^3\)
biết a+b=2 và a.b=-35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:Vì a.b<0 suy ra a.b là số nguyên âm = số âm nhân số dương
Mà a<b suy ra là số nguyên âm và b là số nguyên dương
Vậy a là số nguyên âm,b là số nguyên dương và a,b khác dấu{a,b trái dấu}
Câu 2
A, a,b là số nguyên dương suy ra b là số nguyên dương
B, a.b là số nguyên âm
Suy ra a,b là một số nguyên âm và một số nguyên dương hoặc a,b là một số nguyên dương hoặc một số nguyên âm
Vậy b là số nguyên âm nếu a dương còn b là số nguyên dương nếu a âm
C,Suy ra b là số nguyên âm hoặc là số nguyên duong
a, Thay x = 25, ta tính được A = 10 7
b, Rút gọn được B =
2
x
-
3
c, Ta có A.B = 2 - 4 x + 2 => 2 + 2 ∈ Ư 4 . Từ đó tìm được x = 0, x = 4
Ta có x3 + y3
= (x + y)(x2 - xy + y2)
= (x + y)(x2 + 2xy + y2) - 3xy(x + y)
= (x + y)3 - 6xy
= 23 - 6xy
= 8 - 6xy
Lại có x + y = 2
=> (x + y)2 = 4
=> x2 + y2 + 2xy = 4
=> 2xy = -6
=> xy = -3
Khi đó x3 - y3 = 8 + 6.3 = 26
b) a + b = 7
=> a = 7 - b
Khi đó ab = 12
<=> (7 - b).b = 12
=> 7b - b2 = 12
=> 7b - b2 - 12 = 0
=> -(b2 - 7b + 12) = 0
=> b2 - 4b - 3b + 12 = 0
=> b(b - 4) - 3(b - 4) = 0
=> (b - 3)(b - 4) = 0
=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)
Khi b = 3 => a = 4
Khi b = 4 => a = 3
+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1
+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1
c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)
= (a - b)(a2 - 2ab + b2) + 3ab(a - b)
= (a - b)3 + 3ab(a - b)
= 27 + 9ab
Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)
Khi đó C = 27 + 9.6.3 = 27 + 162 = 189
*ab=0\(\Rightarrow\)\(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
*a+4b=41
+ Nếu a=0 thì:
4b=41 => b=41/4 ( ko thỏa mãn vì a,b thuộc N)
+Nếu b=0 thì:
a=41
Vậy S= 41^2=1681
Câu 1: a, x + 3 = -8 => x = (-8) - 3 = -11. b, (35 + x) - 12 = 27 => 35 + x = 27 + 12 = 39 => x = 39 - 35 = 4.
ý a)
(a+b)^2=a^2+b^2+2ab
=> 529=a^2+b^2+246 => a^2+b^2=283
(a^2+b^2)^2=a^4+b^4+2.a^2.b^2
=> 80089=a^4+b^4+30258 => a^4+b^4=49831
(a^2+b^2)(a^4+b^4)=a^6+b^6+a^2.b^4+b^2.a^4=a^6+b^6+a^2.b^2.(a^2+b^2)
=> 14102173=a^6+b^6+15129.283 => a^6+b^6=9820666
còn lại bạn tự tính
\(\left(a+b\right)^3=a^3+3ab\left(a+b\right)+b^3\)
=> \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
Thay \(a+b=2;\)\(ab=-35\)vào biểu thức trên ta có:
\(a^3+b^3=2^3-3.\left(-35\right).2=218\)