Cho \(a^5+b^5-29c^5=149d^5+269c^5\) (a,b,c,d thuộc Z)
Chứng minh: \(\left(a+b+c+d+e\right)⋮30\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(PDZ=\left(a-x\right)\left(b-y\right)\left(c-t\right)\left(d-z\right)\left(e-q\right)\)
Giải: Ta có: \(a;b;c;d;e\) và \(x;y;z;t;q\) là hoán vị của chúng.
Nếu \(a;b;c;d;e\) đồng thời là số chẵn hoặc số lẻ thì hiển nhiên \(PDZ⋮2\)
Nếu \(a;b;c;d;e\) tồn tại ở 4 số lẻ 1 số chẵn hoặc 4 số chẵn 1 số lẻ
\(\Rightarrow x;y;z;t;q\) cũng tồn tại tương ứng
Khi đó: \(PDZ=\left(l_1-c_1\right)\left(l_2-c_2\right)\left(l_3-l_4\right)\left(l_5-l_6\right)\left(l_7-l_8\right)=\left(c_1-l_1\right)\left(c_2-l_2\right)\left(c_3-c_4\right)\left(c_5-c_6\right)\left(c_7-c_8\right)\) và hoán vị
Vì \(l-l=c;c-c=c\) nên \(PDZ⋮2\)
chứng minh tương tự với trường hợp 3 lẻ 2 chẵn và 3 chẵn 2 lẻ ta có đpcm
mình ghi nhầm thui với lại bạn này gửi ngược ảnh, mình dùng máy tính không xem được
Ta có a - b + b - c + c - a = 0 \(⋮30\)
=> (a - b) + (b - c) + (c - a) \(⋮\)30 (0)
Xét hiệu (a - b)5 + (b - c)5 + (c - a)5 - [(a - b) + (b - c) + (c - a)]
= [(a - b)5 - (a - b)] + [(b - c)5 - (b - c)] + [(c - a)5 - (c - a)]
Nhận thấy : (a - b)5 - (a - b) = (a - b)[(a - b)4 - 1]
= (a - b)[(a - b)2 - 1][(a - b)2 + 1]
= (a - b)[(a - b)2 - 1][(a - b)2 - 4 + 5]
= (a - b)[(a - b)2 - 1][(a - b)2 - 4] + 5(a - b)[(a - b)2 - 1]
= (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1)(a - b)(a - b + 1)
Nhận thấy (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1) \(⋮\)30 (tích 5 số nguyên liên tiếp) (1)
Lại có (a - b - 1)(a - b)(a - b + 1) \(⋮\)6
=> 5(a - b - 1)(a - b)(a - b + 1) \(⋮\)30 (2)
Từ (1) và (2) => (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1)(a - b)(a - b + 1) \(⋮\)30
=> (a - b)5 + (b - c)5 + (c - a)5 - [(a - b) + (b - c) + (c - a)] \(⋮\)30 (4)
Từ (0) ; (4) => (a - b)5 + (b - c)5 + (c - a)5 \(⋮\)30 (đpcm)
không thấy e nha bạn