K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Lời giải:

\(\sqrt{x^2+1}=3\)

\(\Rightarrow x^2+1=3^2=9\)

\(\Leftrightarrow x^2=8\Rightarrow x=\pm \sqrt{8}=\pm 2\sqrt{2}\) (thỏa mãn)

Vậy tập nghiệm của PT là \(x\in \left\{2\sqrt{2}; -2\sqrt{2}\right\}\)

Đáp án C

NV
15 tháng 12 2020

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1\)

\( \Rightarrow \) TXĐ của phương trình là: \(D = \left[ {1; + \infty } \right)\)

Giải phương trình: \(\sqrt {2{x^2} - 3}  = x - 1\)

\(\begin{array}{l} \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 3} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 3 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 4 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x =  - 1 + \sqrt 5 }\\{x =  - 1 - \sqrt 5 }\end{array}} \right.\end{array}\)

Ta thấy \(x =  - 1 + \sqrt 5 \) thỏa mãn.

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 1 + \sqrt 5 } \right\}\)

Chọn C.

Ta có: \(x-3\sqrt{x}+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

=>x=4 hoặc x=1

Khi x=4 thì \(A=2\cdot\left(1-2\right)=-2\)

Khi x=1 thì \(A=1\cdot\left(1-1\right)=0\)

10 tháng 4 2022

Nguyễn Lê Phước Thịnh                                                         , điều kiện 0<x<1 bn ơi??

3 tháng 10 2016

Hai câu còn lại bạn tự làm nhé :)

3 tháng 10 2016

1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Suy ra MIN A = \(-\sqrt{2}\)khi  \(x=y=z=-\frac{\sqrt{2}}{3}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Phương trình: \({x^2} - 3x + 2 = 0\,\,\,\left( 1 \right)\)

Ta có: \(\Delta  = 9 - 4.2 = 1 > 0\)

Phương trình (1) có hai nghiệm \(\left\{ \begin{array}{l}{x_1} = \frac{{3 + 1}}{{2.1}} = 2\\{x_1} = \frac{{3 - 1}}{{2.1}} = 1\end{array} \right.\) => \({S_1} = \left\{ {1;2} \right\}\)

Phương trình: \(\left( {x - 1} \right)\left( {x - 2} \right) = 0\,\,\,\left( 2 \right)\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\) => \({S_2} = \left\{ {1;2} \right\}\)

b)     Hai tập \({S_1};{S_2}\) có bằng nhau

NV
20 tháng 3 2022

TXĐ: \(x>-4\)

Khi đó BPT tương đương:

\(x^2+2x>3\Leftrightarrow x^2+2x-3>0\)

\(\Rightarrow\left[{}\begin{matrix}x>1\\x< -3\end{matrix}\right.\)

Vậy tập nghiệm của BPT là: \(\left[{}\begin{matrix}x>1\\-3< x< -3\end{matrix}\right.\)

NV
11 tháng 6 2021

Để (1) có 2 nghiệm dương \(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(m+3\right)^2-m-1\ge0\\x_1+x_2=2\left(m+3\right)>0\\x_1x_2=m+1>0\end{matrix}\right.\) \(\Rightarrow m>-1\)

\(P=\left|\dfrac{\sqrt{x_1}-\sqrt{x_2}}{\sqrt{x_1x_2}}\right|>0\Rightarrow P^2=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)^2}{x_1x_2}\)

\(P^2=\dfrac{x_1+x_2-2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{2\left(m+3\right)-2\sqrt{m+1}}{m+1}=\dfrac{4}{m+1}-\dfrac{2}{\sqrt{m+1}}+2\)

\(P^2=\left(\dfrac{2}{\sqrt{m+1}}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\Rightarrow P\ge\dfrac{\sqrt{7}}{2}\)

Dấu "=" xảy ra khi \(\sqrt{m+1}=4\Rightarrow m=15\)

NV
6 tháng 8 2021

a là nghiệm nên \(\sqrt{2}a^2+a-1=0\Rightarrow\sqrt{2}a^2=1-a\)

\(\Rightarrow2a^4=\left(1-a\right)^2=a^2-2a+1\)

\(\Rightarrow2a^4-2a+3=a^2-4a+4=\left(a-2\right)^2\)

Mặt khác \(1-a=\sqrt{2}a^2>0\Rightarrow a< 1\)

\(\Rightarrow\sqrt{2\left(2a^4-2a+3\right)}+2a^2=\sqrt{2\left(a-2\right)^2}+2a^2=\sqrt{2}\left(2-a\right)+2a^2\)

\(=\sqrt{2}\left(\sqrt{2}a^2-a+2\right)=\sqrt{2}\left(1-a-a+2\right)=\sqrt{2}\left(3-2a\right)\)

\(\Rightarrow C=\dfrac{2a-3}{\sqrt{2}\left(3-2a\right)}=-\dfrac{\sqrt{2}}{2}\)