Tìm \(x\), biết: \(\dfrac{x^2+2015x}{2016}+x^2+\dfrac{x^2+2015x}{1008}+2015x+\dfrac{x^2+2015x}{672}=2022\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) = x2016 - 2015x2015 - 2015x2014 - ... - 2015x2 - 2015x
<=> P(x) = x2016 - 2016x2015 + x2015 - 2016x2014 + x2014 - ... - 2016x2 + x2 - 2016x + x
<=> P(2016) = 20162016 - 2016.20162015 + 20162015 - 2016.20162014 + 20162014 -...- 2016.20162 + 20162 - 2016.2016 + 2016
<=> P(2016)=20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ... - 20163 + 20162 - 20162 + 2016
<=> P(2016) = 2016
Vậy P(2016) = 2016
Ta có:
P(2016) = 20162016 - 2015 . 20162015 - 2015 . 20162014 -.....- 2015 . 20162 - 2015 . 2016 - 1
P(2016) = 20162016 - ( 2016 - 1 ) . 20162015 - ( 2016 -1 ) . 20162014 - ..... - ( 2016 - 1 ) . 20162 - ( 2016 - 1 ) . 2016 - 1
P(2016)= 20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ..... - 20163 + 20162 - 20162 + 2016 - 1
P(2016) = 2016 - 1
P(2016) = 2015.
Ta có x=2016 => x-1=2015
Thay vào ta được :
A=x^6 -(x-1)x^5 - (x-1)x^4 -(x-1)x^3 - (x-1)x^2 - (x-1)x -x
= x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x=0
Thay x=2016 vào biểu thức trên ta được:
\(A=x^6-\left(x-1\right).x^5-\left(x-1\right).x^4-\cdot\left(x-1\right).x^3-\left(x-1\right).x^2-\left(x-1\right).x-x\)
\(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x\)
\(=0\)
Vậy x=2016 là nghiệm của đa thức .
a=x4-2223x3+2223x2-2223x+2223
=x3(x-2223)+x(x-2223)+2222x2+2003(*)
thay x=2222,ta co:
(*)<=>-22223-2222+22223+2223=1
dung thi chon nha
\(\left(x^2+2015x\right)\left(\dfrac{1}{2016}+\dfrac{1}{1008}+\dfrac{1}{672}+1\right)=2022\)
\(\Leftrightarrow\left(x^2+2015x\right).\dfrac{2022}{2016}=2022\)
\(\Leftrightarrow x^2+2015x=2016\)
\(\Leftrightarrow x^2+2015x-2016=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2016\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2016\end{matrix}\right.\)