Tìm x \(\inℕ\), x nhỏ nhất . 1<x sao cho x : 2,4,5 đều dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\text{M= 2017-2016:(2015-x)}\)đạt giá trị nhỏ nhất thì \(2016:\left(2015-x\right)\)đạt giá trị lớn nhất.
\(\Rightarrow2015-x=1\Rightarrow x=2014\)
\(\Rightarrow M=2017-2016:1=2017-2016=1\)
Vậy giá trị nhỏ nhất của M=1 khi x=2014.
Ta có: \(2^6< 2^6+2^x+2^{3y}=A^2< 10000\)
=> \(8^2< 2^6+2^x+2^{3y}=A^2< 100^2\)
Vì A thuộc N.
Xét trường hợp: \(2^6+2^x+2^{3y}=9^2\)
=> \(2^x+2^{3y}=17\)là số lẻ
Do x, y thuộc N nên xảy ra hai trường hợp hoặc là x=0, hoặc là y=0
+) Với x=0
ta có: \(1+2^{3y}=17\Leftrightarrow2^{3y}=16=2^4\Leftrightarrow3y=4\Leftrightarrow y=\frac{4}{3}\)( loại vì y là số tự nhiên)
+) Với y=0
ta có: \(2^x+1=17\Leftrightarrow2^x=16=2^4\Leftrightarrow x=4\)(tm)
Khi đó x+y=4
Mà đề bài bảo tìm giá trị nhỏ nhất của x+y, x, y thuộc N
Xét các trường hợp :
+) y=0, x<4 loại
+) y=1, x<3 loại
+) y=2, x=0 => \(2^6+2^0+2^6=129\)( loại vì ko p là số chính phương)
+) y=2, x=1 => \(2^6+2+2^6=130\)(loại)
+) y=3, x=0 => \(2^6+2^0+2^9=577\) ( loại)
Vậy giá trị nhỏ nhất cần tìm là x+y=4
Ta có:36^x có tận cùng là 6,còn 5^y có tận cùng là 5.Nếu 36^x>5^y thì A tận cùng là 1.Nếu 36^x<5^y thì A tận cùng là 9.
Xét khả năng A=1:Ta có \(36^x-5^y=1\Leftrightarrow36^x-1=5^y\).Đẳng thức này ko xảy ra vì vế trái chia hết cho 35 nên chia hết cho 7,còn vế phải ko chia hết cho 7.
Xét khả năng A=9:Ta có \(5^x-36^y=9\Rightarrow5^x⋮9\)(vô lý)
Xét khả năng A=11.Xảy ra khả năng này,chẳng hạn với x=1,y=2 thì \(A=\left|36-5^2\right|=11\)
Vậy min A=11
nhận xét: với x,y dương thì
+ nếu 36x>5y thì |36x-5y| có tận cùng là 1
+ nếu 36x<5ythì |36x-5y| có tận cùng là 9
xét 36x-5y =1 <=> 36x-1=5y điều này không xảy ra vì VT chia hết cho 7 (35 chia hết cho 7), VP không chia hết cho 7
dễ thấy x=1; y=2 thì |36x-5y|=11
vậy 11 là giá trị nhỏ nhất của |36x-5y| khi x,y nguyên dương
a) \(f\left(x\right)=2.\left(x^2\right)^n-5.\left(x^n\right)^2+8n^{n-1}.x^{1+n}-4.x^{n^2+1}.x^{2n-n^2-1}\)
\(=2x^{2n}-5x^{2n}+8x^{2x}-4x^{2n}\)
\(=x^{2n}\)
b) \(f\left(x\right)+2020=x^{2n}+2020\)
Vì \(n\in N\Rightarrow2n\in N\)và 2n là số chẵn
\(\Rightarrow x^{2n}\ge1\)
\(\Rightarrow x^{2n}+2020\ge2021\)
Dấu"="xảy ra \(\Leftrightarrow x^{2n}=1\)
\(\Leftrightarrow n=0\)
Vậy ...
( ko bít đúng ko -.- )
\(\overline{xy}=10.x+y\) . Khi đó, \(\frac{\overline{xy}}{x+y}=\frac{10x+y}{x+y}\)
Mặt khác, \(\frac{10x+y}{x+y}=\frac{100x+10y}{10\left(x+y\right)}=\frac{19\left(x+y\right)+81-9y}{10\left(x+y\right)}=\frac{19}{10}+\frac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\frac{19}{10}\)
Do đó, \(\frac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất \(\frac{19}{10}\) khi \(9x-y=0\) , hay x = 1, y = 9.
Vậy số cần tìm là 19
Em muốn nhanh thì em chia nhỏ câu hỏi ra để nhiều người trợ giúp cùng một lúc như vậy hiệu quả cao, chi tiết và nhanh chóng em nhé.
Ko chắc nha !
Các số này sẽ phải chia hết cho 2,3,4,5,6 Vậy nó sẽ là tìm bội chung, và ở đây mình hướng dẫn tìm Bội chung nhỏ nhất cụ thể :)
Vậy số đó lớn nhất là 2x3x4x5x6 = 720 vậy sau đó nếu ta cộng thêm 1 thì được 721 chia cho các số kia đều dư 1 nhưng đó chưa phải là số nhỏ nhất :)
Phân tích 2x3x4x5x6 = 2x3x2x2x5x2x3 = 720
Các số nào bị lặp thì có thể bỏ (chia đi, lấy từ số lớn) (gồm số 2 và số 3) chia cho 3 trước
Ta được 2x3x2x2x5x2x3/3 = 720/3 = 240 sau đó cộng 1 thì dc 241 chia các số kia đều dư 1
Nhưng để nó vẫn là số có 3 chữ số thì mình ko thể chia cho 3 nữa mà chỉ có thể chia cho 2 (bớt 1 số 2 đy) 2x3x2x2x5x2/2 = 240/2 = 120 đến đây thì không thể chia đi thêm số nào được nữa để nó vẫn còn là số 3 chữ số :) Vậy ta cộng thêm 1 để làm số dư sau này :) sẽ được 121
Vậy số 121 là đáp số cần tìm :)
Nguyễn Minh Anh: Quá dài dòng rồi bạn eyy!Mà lại sai đáp án nữa cơ
Ta có: x : 2 (dư 1); x : 4 (dư 1) ; x : 5 (dư 1)
Suy ra \(x+1⋮2;4;5\).Do x bé nhất nên x + 1 bé nhất hay \(x+1\in BCNN\left(2;4;5\right)=20\)
Do vậy \(x+1=20\Leftrightarrow x=19\)