Cho tam giác ABC ,D là trung điểm của cah AB. Đường thẳng qua D song song với cạnh BC , cắt AC ở E, đường thẳng qua E song song vs cạnh AB cắt BC ở F .Chứng minh rằng:
a)AD=EF
b)AE=EC, BF=FC
c) \(DE=\frac{1}{2}BC\)và \(EF=\frac{1}{2}AB\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác DEF và tam giác FBD có:
Cạnh DF chung
\(\widehat{EDF}=\widehat{BFD}\) (Hai góc so le trong)
\(\widehat{EFD}=\widehat{BDF}\) (Hai góc so le trong)
\(\Rightarrow\Delta DEF=\Delta FBD\left(g-c-g\right)\Rightarrow EF=BD=AD\)
b)
Xét tam giác ADE và tam giác EFC có:
\(\widehat{DAE}=\widehat{FEC}\) (Hai góc so le trong)
\(\widehat{EFC}=\widehat{ADE}\left(=\widehat{DBF}\right)\)
\(\Rightarrow\Delta ADE=\Delta EFC\left(g-c-g\right)\Rightarrow AE=EC\)
Từ đó ta cũng suy ra DE = FC
Lại có do \(\Delta DEF=\Delta FBD\Rightarrow DE=FB\)
Vậy nên FC = FB
c) Ta có FC = FB = DE nên \(DE=\frac{BC}{2}\)
EF = AD = DB nên \(EF=\frac{AB}{2}\)
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
a: Xét tứ giác ADFE có
AD//FE
AE//DF
Do đó: ADFE là hình bình hành
Suy ra: AD=EF
b: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
hay AE=EC
Xét ΔABC có
E là trung điểm của AC
EF//AB
Do đó: F là trung điểm của BC
hay BF=FC
mặt dù đây ko phải câu hỏi mình chọn nhưng nó rất là hay và dễ hiểu
Mình cũng xin chúc các bạn năm mới vui vẻ cùng Hoc24 nha!
a)Nối D với F. Xét \(\Delta BDF\) và \(\Delta FDE\) ta có:
\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))
DF cạnh chung
\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))
\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)
\(\Rightarrow DB=EF\) (2 cạnh tương ứng )
Mà \(DB=DA\) (D là trung điểm AB)
Suy ra AD=EF
b)Xét \(\Delta ADE\) và \(\Delta EFC\:\) ta có:
\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)
\(AD=EF\) (cmt)
\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)
\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)
c)Vì \(\Delta ADE=\Delta EFC\) (cmt)
Suy ra \(AE=EC\) (2 cạnh tương ứng )
a. Xét tam giác ABC có:
DE//BC (gt)
=>\(\dfrac{DA}{DB}=\dfrac{EA}{EC}\)(định lý Ta-let) (1)
Xét tam giác ADE có:
AD//CF (gt)
=>\(\dfrac{EA}{EC}=\dfrac{DE}{EF}\)(định lý Ta-let) (2)
Từ (1) và (2) suy ra:\(\dfrac{DA}{DB}=\dfrac{ED}{FE}\)
a) Xét tam giác CEF và tam giác FBD có:
- DF là cạnh chung
- Góc EDF = góc DFB ( Hai góc so le nhau trong của DE//BC )
- Góc BDF = góc EDF ( Hai góc so le nhau trong của EF//AB )
=> Tam giác CEF = tam giác FBD ( g.c.g )
=> EF = DB ( 2 cạnh tương ứng )
Mà BD = AD ( D là trung điểm của AB )
=> EF = AD
Vậy AD = EF
b)
Vì tam giác ADE = tam giác EFC
=> AE = EC ( vì 2 cạnh tương ứng )
BẠN TỰ VẼ HÌNH NHA!!
a. Xét \(\Delta CEF\) và \(\Delta FBD\) có :
DF chung
\(\widehat{EDF}=\widehat{DEB}\) ( 2 góc so le trong )
\(\widehat{BDF}=\widehat{EDF}\) ( 2 góc so le trong)
\(\Rightarrow\Delta CEF=\Delta FBD\) ( g.c.g)
\(\Rightarrow\) EF=DB (2 cạch tương ứng)
mà BD=AD (D là trung điểm của AB
\(\Rightarrow\) AD=EF