Cho hình bình hành ABCD gọi O là giao điểm 2 đường chéo. Từ C kẻ CE vuông góc AB, CF vuông góc AD. C/m tam giác EOF cân
giúp mink với, mik cảm ơn( mik cần gấp)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Xét tam giác AOD và tam giác BOC có
^CBD=^ADB; ^ACB=^CAD
=> tam giác AOD đồng dạng với tam giác BOC => OA/OC=OB/OD => OA.OD=OC.OB (dpcm)
2/
Ta có ^ABC=^ADC (2 góc đối hình bình hành)
Xét hai tam giác vuông BCE và tam giác vuông DCG có
^ECB=^GDC (cùng bù với ^ABC=^ADC)
=> tam giác BCE đồng dạng với tam giác DCG
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
⇒AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Ta có: ΔADE cân tại A(cmt)
nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)
mà \(\widehat{AED}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Ta có: ΔABD=ΔACE(cmt)
nên \(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)
hay \(\widehat{EBI}=\widehat{DCI}\)
Ta có: AE+EB=AB(E nằm giữa A và B)
AD+DC=AC(D nằm giữa A và C)
mà AE=AD(cmt)
và AB=AC(ΔABC cân tại A)
nên EB=DC
Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC(cmt)
\(\widehat{EBI}=\widehat{DCI}\)(cmt)
Do đó: ΔEBI=ΔDCI(cạnh góc vuông-góc nhọn kề)
⇒IB=IC(hai cạnh tương ứng)
a) Xét tam giác ADB và tam giác AEC có:
AB=AC (gt)
A là góc chung
góc E = góc D =90 độ
=> tam giác ADB= tam giác AEC ( cạnh huyền góc nhọn)
=> AE = AD ( 2 cạnh tương ứng)
=> tam giác ADE cân tại A
b) Ta có: tam giác ADE can tại A ( cmt)
góc E1 = góc D1= 180 độ - góc A : 2 ( góc A + góc D1 + góc E1 = 180 độ)
góc B= góc C= 180 độ - góc A : 2 ( gt)
=> góc E1= góc B ( 2 góc tương ứng)
Mà góc E1 = góc B ( 2 góc tương ứng)
=> DE//BC
c) Ta có: EB= AB - AE
DC= AC - AD
mà AB = AC (gt)
AE = AD ( cma)
=> EB=DC
xét tam giác EIB và tam giác DIC có:
góc E = góc D= 90 độ ( gt)
góc B1 = góc C1 ( tam giác AEC = tam giác ADB)
EB = DC ( cmt)
=> tam giác EIB = tam giác DIC ( g.c.g)
=> IB - IC ( 2 cạnh tương ứng)
a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có
góc IAB chung
=>ΔAIB đồng dạng vơi ΔAEC
b: ΔAIB đồng dạng với ΔAEC
=>AI/AE=AB/AC
=>AI/AB=AE/AC
=>ΔAIE đồng dạng với ΔABC và AB*AE=AI*AC
c: Xét ΔFAC vuông tại F và ΔICB vuông tại I có
góc FAC=góc ICB
=>ΔFAC đồng dạng với ΔICB
=>AF/IC=CA/CB
=>AF*CB=CA*IC
=>AB*AE+AF*CB=AC^2
a: Xét hình thang ADCB có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của CB
Xét tứ giác MNCD có
MD//CN
MD=CN
Do đó: MNCD là hình bình hành
mà DM=DC
nên MNCD là hình thoi
đề là tam giác EOF hoặc DEF (tại vì mik viết nó giống nhau)
b) cho góc a=120 độ, tính EOF nữa