Tìm GTNN của biểu thức:
\(N=\dfrac{3x^2-4x}{x^2+1}\)
\(P=\dfrac{2x+1}{x^2+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\frac{3x^2-4x}{x^2+1}=\frac{4x^2-4x+1-\left(x^2+1\right)}{x^2+1}=\frac{\left(2x-1\right)^2}{x^2+1}-1\ge-1\forall x\)
Dấu "=" xảy ra khi \(2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy \(MinN=-1\Leftrightarrow x=\frac{1}{2}\)
\(P=\frac{2x+1}{x^2+2}=\frac{4x+2}{2x^2+4}=\frac{x^2+4x+4-\left(x^2+2\right)}{2x^2+4}=\frac{\left(x+2\right)^2}{2x^2+4}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+2=0\Rightarrow x=-2\)
Vậy \(MinP=-\frac{1}{2}\Leftrightarrow x=-2\)
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
1: Khi x=2 thì \(A=\dfrac{4\cdot2+1}{2-1}=9\)
2: \(=\dfrac{3x+1-2x^2-2x+3x^2-3x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)