K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2022

Kẻ BH vuông góc với AC

\(S_{ABM}=\dfrac{BH\cdot AM}{2}=\dfrac{BH\cdot CM}{2}\)

\(S_{BMC}=\dfrac{BH\cdot MC}{2}\)

Do đó: \(S_{ABM}=S_{BMC}\)

9 tháng 2 2022

a) Kẻ đường cao AH

Ta có: \(S_{ABM}=\dfrac{1}{2}.AH.BM;S_{ACM}=\dfrac{1}{2}.AH.CM\)

Mà BM = CM (do M là trung điểm của BC )

\(\Rightarrow S_{ABM}=S_{ACM}\)

b) Ta có: \(S_{ABC}=S_{ABM}+S_{ACM}=S_{ABM}+S_{ABM}=2S_{ABM}\)

9 tháng 2 2022

a) Xét tam giác ABM và tam giác ACM có:

2 tam giác có chung chiều cao hạ từ A xuống BC 

lại có MB=MC( AM đường trung tuyến)

\(S_{ABM}=S_{ACM}\)(đpcm)

b) Xét tam giác ABM và tam giác ABC có:

2 tam giác có chung chiều cao hạ từ A xuống BC 

lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)

⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)

9 tháng 2 2022

a) Xét tam giác ABM và tam giác ACM có:

2 tam giác có chung chiều cao hạ từ A xuống BC 

lại có MB=MC( AM đường trung tuyến)

\(S_{ABM}=S_{ACM}\)(đpcm)

b) Xét tam giác ABM và tam giác ABC có:

2 tam giác có chung chiều cao hạ từ A xuống BC 

lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)

⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)

Kẻ đường cao AH

\(S_{ABM}=\dfrac{AH\cdot BM}{2}\)

\(S_{ACM}=\dfrac{AH\cdot CM}{2}\)

mà BM=CM

nên \(S_{ABM}=S_{ACM}\)

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFfffffff

11 tháng 2 2016

uygchy022312

10 tháng 5 2021

undefined

11 tháng 5 2021

bn ở trường nào