K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

\(A=2+2^2+2^3+...+2^{100}\)

\(A=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(A=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(A=2+2^2\cdot7+...+2^{98}\cdot7\)

\(A=2+7\cdot\left(2^2+...+2^{98}\right)\)

Dễ thấy \(7\cdot\left(2^2+...+2^{98}\right)⋮7\)

\(\Rightarrow\) A chia 7 dư 2

30 tháng 11 2018

A=2+(22+23+24)+...+(298+299+2100)A=2+(22+23+24)+...+(298+299+2100)

A=2+22(1+2+22)+...+298(1+2+22)A=2+22(1+2+22)+...+298(1+2+22)

A=2+22⋅7+...+298⋅7A=2+22⋅7+...+298⋅7

A=2+7⋅(22+...+298)A=2+7⋅(22+...+298)

Ta thấy 7⋅(22+...+298)⋮77⋅(22+...+298)⋮7

⇒⇒ A chia 7 dư 2