chứng minh các bất đẳng thức a^2+b^2+c^2+d^2+4 >=2.(a+b+c+d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
b ) Làm tương tự như a )
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)
cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)
b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)
CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)
Phản chứng rằng tất cả đều đúng. Tích các bất đẳng thức lại cho ta
\(a\left(1-a\right)b\left(1-b\right)c\left(1-c\right)d\left(1-d\right)>\frac{1}{2}\times\frac{2}{3}\times\frac{1}{8}\times\frac{3}{32}=\frac{1}{256}.\)
Mặt khác, ta có \(\left(a-\frac{1}{2}\right)^2\ge0\to a\left(1-a\right)\le\frac{1}{4}.\) Tương tự \(b\left(1-b\right),c\left(1-c\right),d\left(1-d\right)\le\frac{1}{4}\to\)
\(a\left(1-a\right)b\left(1-b\right)c\left(1-c\right)d\left(1-d\right)<\)\(\left(\frac{1}{4}\right)^4=\frac{1}{256},\) mâu thuẫn.
\(a^2+b^2+c^2+d^2+4\ge2\left(a+b+c+d\right)\)
\(a^2+b^2+c^2+d^2+4-2\left(a+b+c+d\right)\ge0\)
\(a^2+b^2+c^2+d^2+4-2a-2b-2c-2d\ge0\)
\(\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)+\left(d^2-2d+1\right)\ge0\)
\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2+\left(d-1\right)^2\ge0\)
Bất đẳng thức trên đúng với mọi a; b; c; d
=> bất đẳng thức được chứng minh