K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
5 tháng 4 2019

+ \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+b+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(\Rightarrow ab+bc+ca< \frac{1}{2}\)

1 tháng 2 2016

khó quá??????? vì mik chưa học đến lớp8

1 tháng 2 2016

mik chưa học lớp 8! sorry

31 tháng 3 2017

(a+b+c)^2=1

a^2+b^2+c^2+2ab+2bc+2ac=1

2ab+2bc+2ac=1-(a^2+b^2+c^2)<=1

ab+bc+ac<=1/2 

5 tháng 12 2019

Ta có: a + b + c = 2 nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)

\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)\)\(=\left(b+c\right)\left(a+c\right)\)

Áp dụng BĐT Cô - si cho 2 số không âm:

\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\)(Vì a,b,c thực dương)

\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)(cmt)

\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\)(nhân 2 vế cho ab thực dương)    (1)

(Dấu "="\(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\))

Tương tự ta có: \(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{b+a}+\frac{bc}{a+c}\right)\)(Dấu "="\(\Leftrightarrow b=c\))  (2)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)(Dấu "="\(\Leftrightarrow a=c\))  (3)

Cộng các BĐT (1) , (2) , (3), ta được:

\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)

\(\le\frac{1}{2}\left(a+b+c\right)=1\)

Vậy \(P=\frac{ab}{\sqrt{ab+2c}}\)\(+\frac{bc}{\sqrt{bc+2a}}\)\(+\frac{ca}{\sqrt{ca+2b}}\le1\)

(Dấu "="\(\Leftrightarrow a=b=c=\frac{2}{3}\))

5 tháng 12 2019

Ta có:

\(\frac{ab}{\sqrt{ab+2c}}=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{ab}{c+a}+\frac{ab}{c+b}\)

Tương tự:

\(\frac{bc}{\sqrt{bc+2a}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)

\(\frac{ca}{\sqrt{ca+2b}}\le\frac{ca}{b+c}+\frac{ca}{b+a}\)

Khi đó:

\(P\le\frac{ab}{a+c}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{b+a}\)

\(=\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{b+a}\)

\(=a+b+c=2\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)

19 tháng 1 2017

\(ab+bc+ac\le1\)

Ta có \(a^2+b^2+c^2=1\)

\(\Rightarrow ab+bc+ac\le a^2+b^2+c^2\)

Áp dụng bất đẳng thức Cô - si

\(\Rightarrow\left\{\begin{matrix}a^2+b^2\ge2\sqrt{a^2b^2}=2ab\\b^2+c^2\ge2\sqrt{b^2c^2}=2bc\\a^2+c^2\ge2\sqrt{a^2c^2}=2ac\end{matrix}\right.\)

Cộng theo từng vế

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow1\ge ab+bc+ac\) ( đpcm )

Y
15 tháng 4 2019

phải là \(ab+bc+ca\le1\) nha bởi vì dấu "=" vẫn xảy ra đó.

+ \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\le2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow ab+bc+ca\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=b=c\\a^2+b^2+c^2=1\end{matrix}\right.\Leftrightarrow a=b=c=\pm\sqrt{\frac{1}{3}}\)

12 tháng 7 2016
  • Ta có :

 \(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}\) \(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)

  • Theo bất đẳng thức tam giác : 

\(\hept{\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}}\)\(\Rightarrow\hept{\begin{cases}c\left(a+b\right)>c^2\\a\left(b+c\right)>a^2\\b\left(a+c\right)>b^2\end{cases}}\) \(\Rightarrow\hept{\begin{cases}c^2< bc+ac\\a^2< ab+ac\\b^2< ab+bc\end{cases}}\) \(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)