K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

tìm số tự nhiên n và k sao cho A là số nguyên tố biết A=  n4 + 42k+1 

31 tháng 8 2019

đéo biết

7 tháng 3 2016

Ta dựa vào nhận xét sau đây: Nếu \(p\) là số nguyên tố và \(p=ab\)  với a,b là các số nguyên dương thì a=1 hoặc b=1. Ta có

\(A=n^4+4\cdot2^{4k}=\left(n^2\right)^2+2\cdot n^2\cdot2^{2k+1}+\left(2^{2k+1}\right)^2-2^{2k+2}\cdot n^2\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2^{k+1}\cdot n\right)^2=\left(n^2+2^{2k+1}-2^{k+1}\cdot n\right)\left(n^2+2^{2k+1}+2^{k+1}n\right).\)

Vì A là số nguyên tố và \(n^2+2^{2k+1}-2^{k+1}\cdot n<\)\(n^2+2^{2k+1}+2^{k+1}\cdot n\).  Suy ra \(n^2+2^{2k+1}-2^{k+1}\cdot n=1\).  Suy ra  \(\left(n-2^k\right)^2+2^{2k}=1\to n=2^k,2^{2k}=1\to k=0,n=1.\)   Khi đó A=1+4=5 là số nguyên tố.

7 tháng 3 2016

^^ đang nghĩ

2 tháng 3 2016

Câu hỏi lớp 9 cậu đăng lên h.vn thì tốt hơn

2 tháng 3 2016

Minh Triều em nghĩ anh tìm các số nguyên tố là được. Tính cũng dễ hơn.

2 tháng 3 2016

Để A = n4 + 42k+1 là số nguyên tố <=> ƯC ( n4 ; 42k+1 ) = 1

=> n4 và 42k+1 chỉ có 1 ước nguyên dương

=> ( 4 + 1 )( 2k + 1 + 1 ) = 1

=> 5.( 2k + 2 ) = 1 => 10k + 10 = 1

=> 10k = - 9 => k = - 9/10

Theo đề , n và k là số tự nhiên

=> n ; k ∈ ∅

2 tháng 3 2016

Đinh Đức Hùng vậy khi n=1 và k=0

2 tháng 3 2016

đăng 1 cái là ok rồi đăng j lắm thế

Gợi ý: Áp dụng hằng đẳng thức a4+4b4=a4+4a2b2-(2ab)2=(a^2+2b^2-2ab)(a^2+2b^2+2ab)

thấy n^4+4^2k+1=n^4+4(2^k)^4 áp dụng hằng đẳng thức trên là xong

mà trong câu hỏi tương tự cũng có đó mặc dù ko có lời giải


 

25 tháng 6 2015

Gọi ƯCLN(2k+1; 2k+3) là d. Ta có:

2k+1 chia hết cho d

2k+3 chia hết cho d

=>2k+3 - (2k+1)chia hết chio d => 2 chia hết chi d

Mà 2k +1 và 2k+3 đều là số lẻ không chia hết cho 2

=> d\(\ne\) 2

=>d=1

=>2k+1 và 2k+3 nguyên tố cùng nhau.

12 tháng 12 2018

a, Với k ≥ 2 thì 7k có ít nhất 3 ước là 1,7,7k  nên 7k là hợp số ( không thỏa mãn).

Với k = 1 thì  7k = 7 là số nguyên tố.

Vậy k = 1.

b, k chia cho 5 có thể dư 0,1,2,3,4.

Với k chia cho 5 dư 1 thì k+14 ⋮ 5 và k+14 > 5 nên k+14 là hợp số ( loại).

Với k chia cho 5 dư 2 thì k+85 và k+8 > 5 nên k+8 là hợp số ( loại).

Với k chia cho 5 dư 3 thì k+125 và k+12 > 5 nên k+12 là hợp số ( loại).

Với k chia cho 5 dư 4 thì k+65 và k+6 > 5 nên k+6 là hợp số ( loại).

Với k chia hết cho 5 và k > 5 thì k là hợp số (loại )

Với k = 5. Thử thấy 5,11,13,17,19  đều là số nguyên tố.

Vậy k = 5.