Chứng minh rằng 2 số n+1 và 3n+1 là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
Gọi ƯCNL(3n+1 ; 4n+1) = d
Ta có : 3n + 1 chia hết cho d => 4(3n + 1) chia hết cho d
4n + 1 chia hết cho d => 3(4n + 1) chia hết cho d
=> 4(3n + 1) - 3(4n + 1) chia hết cho d
=> (12n + 4) - (12n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 3n + 1 và 4n + 1 nguyên tố cùng nhau (đpcm)
Gọi d là ƯCLN(3n+1;4n+1)
3n+1 chia hết cho d 4(3n+1) chia hết cho d 12n+4 chia hết cho d(1)
=>{ =>{ =>
4n+1 chia hết cho d 3(4n+1) chia hết cho d 12n+3 chia hết cho d(2)
Lấy (1)-(2) ta được : (12n+4) - (12n+3) chia hết cho d <=>1chia hết cho d
=> d thuộc Ư(1)=>d thuộc Ư(1) => d thuộc {+-1} vì d là ƯCLN=> d=1=> 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(3n + 1; 4n + 1) Nên ta có :
3n + 1 ⋮ d và 4n + 1 ⋮ d
=> 4(3n + 1) ⋮ d và 3(4n + 1) ⋮ d
=> 12n + 4 ⋮ d và 12n + 3 ⋮ d
=> (12n + 4) - (12n + 3) ⋮ d
=> 1 ⋮ d => d = ± 1
Vì ƯCLN(3n + 1; 4n + 1) = 1 nên 3n + 1 và 4n + 1 là nguyên tố cùng nhau ( đpcm )
Gọi \(d=\left(3n+1,4n+1\right)=>\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}}\)
\(=>\left(4n-1\right)-\left(3n-1\right)⋮d\)
\(=>4\left(3n-1\right)-3\left(4n-1\right)⋮d\)
\(=>\left(12n-4\right)-\left(12n-3⋮d\right)\)
\(=>1⋮d\)(đpcm)
Gọi ƯCLN(2n + 1,3n + 2) = d
=> Ta có: \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}3.\left(2n+1\right)⋮d\\2.\left(3n+2\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
=> \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
=> \(6n+4-6n-3⋮d\)
=> \(1⋮d\)
=> \(d=1\)
=> 2n + 1 ; 2n + 2 là 2 số nguyên tố cùng nhau
Gọi d là ước chung của 2n+1 và 3n+1
\(\Rightarrow2n+1⋮d,3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1.\)
Vậy với \(n\in N\)thì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.
Gọi ƯCLN(2n+1;3n+1)=d
=>\(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow6n+3-6n-2⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(2n+1;3n+1)=1
=>2n+1 và 3n+1 là hai số nguyên tố cùng nhau
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Bạn nhìn kiểu này cho dễ
Đề sai rồi em. Em thay n = 1 được 2 và 4 (không nguyên tố cùng nhau) . Do đó đề sai.
Gọi d là UCLN(n+1;3n+1)
=> 3(n+1)-(3n+1) chia hết cho d
=> 2 chia hết cho d
=> d E {-1;-2;1;2}
ta phải cm làm sao mà 2 số này ko cùng chia hết cho 2
+) n+1 chẵn => n lẻ
=> 3n+1 chẵn => n+1;3n+1 ko nguyên tố cùng nhau (sai đề)
(ĐPCM) đùa đó ko có (ĐPCM) đâu nha