Cho tam giác ABC. Từ A, kẻ đường thẳng song song với BC. Từ C, kẻ đường thẳng song song với AB. Hai đường thẳng này cắt nhau tại D.
a, Cm AD=BC và AB=CD
b, Gọi O là giao của AC và BD. Cm O là trung điểm của AC và BD.
c, Qua O, kẻ đg thẳng bất kì cắt 2 đg thẳng AB và CD lần lượt ở M và N. Cm O là trung điểm của MN.
Giúp mk mọi người ơi!!! Câu a mk làm đc rồi nha!!! Làm câu b và c giúp mk!!! Mk cảm ơn!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔCDA có
\(\widehat{BAC}=\widehat{DCA}\)
AC chung
\(\widehat{ACB}=\widehat{CAD}\)
Do đó: ΔABC=ΔCDA
b: Xét ΔADB và ΔCBD có
BD chung
AD=CB
AB=CD
Do đó: ΔADB=ΔCBD
a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:
\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)
Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:
\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)
Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Xét tam giác \(ABD\) có:
\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)
Theo định lí Thales đảo suy ra \(EF//BD\).
b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:
\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)
Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:
\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)
Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)
Theo định lí Thales đảo suy ra \(GH//BD\).
Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:
\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).
a: Xét ΔADC có OF//DC
nên AF/AD=AO/AC
Xét ΔABC có EO//BC
nên AE/AB=AO/AC
=>AF/AD=AE/AB
=>EF//BD
b: OH//AD
=>CH/CD=CO/CA
OG//AB
=>CG/BC=CO/CA
=>CG/BC=CH/CD
=>GH//BD
=>CH/DH=CG/BG
=>CH*BG=DH*CG
Theo đề đúng thì lm như sau:
a) Có: DE // BF (gt)
EF // BD (gt)
Suy ra BD = EF (theo tính chất đoạn chắn) (đpcm)
b) Vì EF // AB (gt) => ADE = DEF (so le trong) (1)
ED // BC (gt) => DEF = EFC (so le trong) (2)
Từ (1) và (2) => ADE = EFC
Xét t/g ADE và t/g EFC có:
EAD = CEF ( đồng vị)
AD = EF ( cùng = BD)
ADE = EFC (cmt)
Do đó, t/g ADE = t/g EFC (g.c.g) (đpcm)
c) Xét t/g MFE và t/g MDB có:
MF = MD (gt)
MFE = MDB (so le trong)
FE = DB (câu a)
Do đó, t/g MFE = t/g MDB (c.g.c)
=> EMF = BMD (2 góc tương ứng)
Mà EMF + EMD = 180o
Nên BMD + EMD = 180o
=> BME = 180o
hay B,M,E thẳng hàng (đpcm)
a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:
Cạnh AC chung
BA = DA
\(\Rightarrow\Delta ABC=\Delta ADC\) (Hai cạnh góc vuông)
\(\Rightarrow BC=DC\)
Hay tam giác BCD cân tại C.
b) Xét tam giác BKN và tam giác CDN có:
BN = CN
\(\widehat{BNK}=\widehat{CND}\) (Đối đỉnh)
\(\widehat{KBN}=\widehat{DCN}\) (So le trong)
\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)
\(\Rightarrow DN=KN\)
c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)
Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)
Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)
Vậy nên MD = MC hay M là trung điểm DC
Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.
Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.
Bài giải :
a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:
Cạnh AC chung
BA = DA
⇒ΔABC=ΔADC (Hai cạnh góc vuông)
⇒BC=DC
Hay tam giác BCD cân tại C.
b) Xét tam giác BKN và tam giác CDN có:
BN = CN
^BNK=^CND (Đối đỉnh)
^KBN=^DCN (So le trong)
⇒ΔBKN=ΔCDN(g−c−g)
⇒DN=KN
c) Do AM // BC nên ^MAC=^BCA
Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC
Từ đó ta cũng có ^DAM=^MDA⇒MD=MA
Vậy nên MD = MC hay M là trung điểm DC
Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.
Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.
Hình đây nhé
b) +) Do AD // BC
BD là cát tuyến
Từ 2 điều trên suy ra: \(\widehat{BDC}=\widehat{ABD}\left(soletrong\right)\)
+) Do AB // DC
AC là cát tuyến
Từ 2 điều trên suy ra: \(\widehat{BAC}=\widehat{ACD}\left(soletrong\right)\)
Xét Tam giác ABO và Tam giác COD có:
\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{ACD}\left(cmt\right)\\\widehat{ABD}=\widehat{BDC}\left(cmt\right)\\AB=CD\left(cmt\right)\end{matrix}\right.\Rightarrow\)T.giác ABO=T.giác COD(g.c.g)
=> OA=OC(2 cạnh tương ứng) và OB=OD(2 cạnh tương ứng)
Mà O nằm giữa 2 điểm A và C; O nằm giức 2 điểm B và D
=> O là trung điểm của AC, O là trung điểm của BD
=> đpcm
c)
Xét Tam giác AMO và Tam giác CNO có:
\(\left\{{}\begin{matrix}\widehat{MAO}=\widehat{NCO}\left(cmt\right)\\\widehat{AOM}=\widehat{CON}\left(2gocdoidinh\right)\\OA=OC\left(cmt\right)\end{matrix}\right.\)
=>T.giác AMO=T.giác CNO(g.c.g)
=> OM = ON(2 cạnh tương ứng) (1)
+) Do AB//CD, MN đi qua O, MN cắt AB tại M, cắt CD tại N
=> M,O,N thẳng hàng
2 điều trên => O nằm giữa 2 điểm M và N (2)
Từ (1) và (2) => O là trung điểm của MN
=> đpcm
P/s: Các bạn check lại hộ!