K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Hình đây nhé

10 tháng 8 2019

b) +) Do AD // BC

BD là cát tuyến

Từ 2 điều trên suy ra: \(\widehat{BDC}=\widehat{ABD}\left(soletrong\right)\)

+) Do AB // DC

AC là cát tuyến

Từ 2 điều trên suy ra: \(\widehat{BAC}=\widehat{ACD}\left(soletrong\right)\)

Xét Tam giác ABO và Tam giác COD có:

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{ACD}\left(cmt\right)\\\widehat{ABD}=\widehat{BDC}\left(cmt\right)\\AB=CD\left(cmt\right)\end{matrix}\right.\Rightarrow\)T.giác ABO=T.giác COD(g.c.g)

=> OA=OC(2 cạnh tương ứng) và OB=OD(2 cạnh tương ứng)

Mà O nằm giữa 2 điểm A và C; O nằm giức 2 điểm B và D

=> O là trung điểm của AC, O là trung điểm của BD

=> đpcm

c)

Xét Tam giác AMO và Tam giác CNO có:

\(\left\{{}\begin{matrix}\widehat{MAO}=\widehat{NCO}\left(cmt\right)\\\widehat{AOM}=\widehat{CON}\left(2gocdoidinh\right)\\OA=OC\left(cmt\right)\end{matrix}\right.\)

=>T.giác AMO=T.giác CNO(g.c.g)

=> OM = ON(2 cạnh tương ứng) (1)

+) Do AB//CD, MN đi qua O, MN cắt AB tại M, cắt CD tại N

=> M,O,N thẳng hàng

2 điều trên => O nằm giữa 2 điểm M và N (2)

Từ (1) và (2) => O là trung điểm của MN

=> đpcm

P/s: Các bạn check lại hộ!

a: Xét ΔABC và ΔCDA có 

\(\widehat{BAC}=\widehat{DCA}\) 

AC chung

\(\widehat{ACB}=\widehat{CAD}\)

Do đó: ΔABC=ΔCDA

b: Xét ΔADB và ΔCBD có

BD chung

AD=CB

AB=CD

Do đó: ΔADB=ΔCBD

13 tháng 9 2023

a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:

\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)

Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Xét tam giác \(ABD\) có:

\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Theo định lí Thales đảo suy ra \(EF//BD\).

b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:

\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)

Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:

\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)

Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)

Theo định lí Thales đảo suy ra \(GH//BD\).

Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:

\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).

a: Xét ΔADC có OF//DC

nên AF/AD=AO/AC

Xét ΔABC có EO//BC

nên AE/AB=AO/AC

=>AF/AD=AE/AB

=>EF//BD

b: OH//AD

=>CH/CD=CO/CA

OG//AB

=>CG/BC=CO/CA

=>CG/BC=CH/CD

=>GH//BD

=>CH/DH=CG/BG

=>CH*BG=DH*CG

19 tháng 12 2016

Theo đề đúng thì lm như sau:

a) Có: DE // BF (gt)

EF // BD (gt)

Suy ra BD = EF (theo tính chất đoạn chắn) (đpcm)

b) Vì EF // AB (gt) => ADE = DEF (so le trong) (1)

ED // BC (gt) => DEF = EFC (so le trong) (2)

Từ (1) và (2) => ADE = EFC

Xét t/g ADE và t/g EFC có:

EAD = CEF ( đồng vị)

AD = EF ( cùng = BD)

ADE = EFC (cmt)

Do đó, t/g ADE = t/g EFC (g.c.g) (đpcm)

c) Xét t/g MFE và t/g MDB có:

MF = MD (gt)

MFE = MDB (so le trong)

FE = DB (câu a)

Do đó, t/g MFE = t/g MDB (c.g.c)

=> EMF = BMD (2 góc tương ứng)

Mà EMF + EMD = 180o

Nên BMD + EMD = 180o

=> BME = 180o

hay B,M,E thẳng hàng (đpcm)

 

19 tháng 12 2016

Đề sai rồi Trang ơi, xem lại đi

6 tháng 4 2018

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

\(\Rightarrow\Delta ABC=\Delta ADC\)   (Hai cạnh góc vuông)

\(\Rightarrow BC=DC\)

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

\(\widehat{BNK}=\widehat{CND}\)   (Đối đỉnh)

\(\widehat{KBN}=\widehat{DCN}\)   (So le trong)

\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)

\(\Rightarrow DN=KN\)

c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)  

Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)

Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.

17 tháng 8 2018

Bài giải : 

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

⇒ΔABC=ΔADC   (Hai cạnh góc vuông)

⇒BC=DC

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

^BNK=^CND   (Đối đỉnh)

^KBN=^DCN   (So le trong)

⇒ΔBKN=ΔCDN(g−c−g)

⇒DN=KN

c) Do AM // BC nên ^MAC=^BCA  

Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC

Từ đó ta cũng có ^DAM=^MDA⇒MD=MA

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.