GTLN A=-/2,68-2x/-5,9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-|2,68 - 2\(x\)| - 5,9
Vì |2,68 - 2\(x\)| ≥ 0 ⇒ -|2,68 - 2\(x\)| ≤ 0 ⇒ - |2,68 - 2\(x\)| - 5,9 ≤ -5,9
Dấu bằng xảy ra khi:
2,68 - 2\(x\) = 0 ⇒ 2\(x\) = 2,68 ⇒ \(x\) = 2,68 : 2 ⇒ \(x=1,34\)
Vậy giá trị lớn nhất của biểu thức:
- |2,68 - 2\(x\)| - 5,9 là -5,9 xảy ra khi \(x=1,34\)
Ta có: \(\left|2,68-2x\right|\ge0\)
\(\Rightarrow-\left|2,68-2x\right|\le0\)
\(\Rightarrow-\left|2,68-2x\right|-5,9\le0-5,9\)
\(\Rightarrow B\le-5,9\)
GTLN của B là -5,9
Dấu "=" xảy ra khi: \(2,68-2x=-5,9\)
\(\Rightarrow2x=2,68-\left(-5,9\right)\)
\(\Rightarrow2x=8,58\)
\(\Rightarrow x=4,29\)
Tìm GTLN?
Ta có:
\(A=-\left|2,68-2x\right|-5,9\)
Mà \(-\left|2,68-2x\right|\le0\left(\forall x\right)\)
\(\Rightarrow A=-\left|2,68-2x\right|-5,9\le-5,9\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left|2,68-2x\right|=0\)
\(\Rightarrow x=1,34\)
Vậy Max(A) = -5,9 khi x = 1,34
B1:
5,3 . 4,7 + ( -1,7 ) . 5,3 - 5,9
= 5,3 . (4,7 - 1,7 ) - 5,9
= 5,3 . 3 - 5,9
= 15,9 - 5,9
= 10
Chúc bn học tốt !
Bài 2:
a) \(\sqrt{2x+1}=3\)
\(\Rightarrow\sqrt{2x+1}=\sqrt{9}\)
\(\Rightarrow2x+1=9\)
\(\Rightarrow2x=9-1\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=8:2\)
\(\Rightarrow x=4\)
Vậy \(x=4.\)
b) \(\frac{1}{3}+x=2,\left(6\right)\)
\(\Rightarrow\frac{1}{3}+x=\frac{8}{3}\)
\(\Rightarrow x=\frac{8}{3}-\frac{1}{3}\)
\(\Rightarrow x=\frac{7}{3}\)
Vậy \(x=\frac{7}{3}.\)
Chúc bạn học tốt!
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
`A=-(x^2-2x)-(y^2+6y)+9`
`=-(x^2-2x+1)-(y^2+6y+9)+19`
`=-(x-1)^2-(y+3)^2+19<=19`
Dấu "=" xảy ra khi `x=1` và `y=-3`
`B=-(2x-5)^2+6|2x+5|+4`
`=-[(2x-5)^2-6|2x-5|+9]+13`
`=-(|2x-5|-3)^2+13<=13`
Dấu "=" xảy ra khi `|2x-5|=3<=>[(x=4),(x=1):}`