1.Cho A=2009 + 2x. tìm x để
a)A chia hết cho 2
b)A chia hết cho 5
2.Chứng tỏ rằng : 1717 - 1313 chia hết cho 2 mà không chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 12⋮2, 14⋮2, 16⋮2
Vậy để A⋮2 thì x là số chẵn
b) Ta có: 12⋮2, 14⋮2, 16⋮2
Vậy để A\(⋮̸\)2 thì x là số lẻ
1:
a: A=5+70+x=x+75
Để A chia hết cho 5 thì x+75 chia hết cho 5
=>x chia hết cho 5
=>\(x\in B\left(5\right)\)
b: Để A không chia hết cho 5 thì x+75 không chia hết cho 5
=>\(x\notin B\left(5\right)\)
2:
\(A=1\cdot2\cdot3\cdot4\cdot5-40=2\cdot4\cdot5\left(3\cdot1-1\right)=40\cdot2=80\)
=>A chia hết cho 2 và 5
B=4*7*5=2*7*2*5
=>B chia hết cho 2 và 5
C=5*7*9*4*11
=5*2*3*7*3*2*11
=>C chia hết cho cả 2;5;3
do a+b chia hết cho 7 =>a chia hết 7,b chia hết 7=> a+8b chia hết cho 7
tương tự ở câu b
c thì chứng minh thêm 2009 chia hết cho 7 là được
Câu 1:
$A=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^{2016}+5^{2017}+5^{2018})$
$=(1+5+5^2)+5^3(1+5+5^2)+....+5^{2016}(1+5+5^2)$
$=(1+5+5^2)(1+5^3+...+5^{2016})$
$=31(1+5^3+...+5^{2016})\vdots 31$ (đpcm)
Câu 2:
$2x+7\vdots 2x-2$
$\Rightarrow (2x-2)+9\vdots 2x-2$
$\Rightarrow 9\vdots 2x-2$
$\Rightarrow 2x-2$ là ước của $9$
Mà $2x-2$ là số chẵn với mọi $x$ nguyên, còn $Ư(9)\in \left\{\pm 1; \pm 3; \pm 9\right\}$ (không có ước nào chẵn)
$\Rightarrow$ không tồn tại $x$ nguyên thỏa mãn yêu cầu đề bài.
mình chỉ làm bài 1thooi,bài 2 rắc rối quá
Vì a+b chia hết cho 7=>a và b chia hết cho 7
a)vì a chia hết cho 7
b chia hết cho 7=>b8 chia hết cho 7
=> a+8b chia hết cho 7
b) tương tự
c)càng tương tự
Bài 1 thì dễ rồi,
a, a + 8b = a + b + 7b chia hết cho 7
b, 3a - 11b = 3(a + b) - 17b chia hết cho 7
c, 5a - 2b - 2009 = 5(a + b) -7b -2009 chia hết cho 7
Bài 2, Hơi khó, để tìm đã
Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17
Ta có 4 ﴾2x + 3y ﴿ + ﴾ 9x + 5y ﴿ = 17x + 17y chia hết cho 17
Do vậy ; 2x + 3y chia hết cho 17 4 ﴾ 2x +3y ﴿ chia hết cho 17 9x + 5y chia hết cho 17
Ngược lại ; Ta có 4 ﴾ 2x + 3y ﴿ chia hết cho 17 mà ﴾ 4 ; 17 ﴿ = 1
2x + 3y chia hết cho 17
Vậy ...