Tìm Max của : \(C=\frac{x^2+15}{x^2+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)
c=3+7/(x^2+2x+3)
max(c)=min(x^2+2x+3)=min[(x+1)^2+2]=2
max(c)=3+7/2=13/2 khi x=-1
\(ĐKXĐ:x\ne1\)
a) \(A=\frac{2\left(x+1\right)}{x^2+x+1}+\frac{2x^2-9x+4}{x^3-1}+\frac{1}{x-1}\)
\(\Leftrightarrow A=\frac{2\left(x+1\right)\left(x-1\right)+2x^2-9x+4+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow A=\frac{2\left(x^2-1\right)+3x^2-8x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow A=\frac{2x^2-2+3x^2-8x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow A=\frac{5x^2-8x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow A=\frac{\left(5x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow A=\frac{5x-3}{x^2+x+1}\)
b) Để \(A=1\)
\(\Leftrightarrow5x-3=x^2+x+1\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy để \(A=1\Leftrightarrow x=2\)
\(B=\frac{x^2+2x+3}{x^2+2}=1+\frac{2x+1}{x^2+2}\)
Giờ ta tìm GTLN, và GTNN của \(\frac{2x+1}{x^2+2}=A\)
Tìm min
\(2A=\frac{4x+2}{x^2+2}=\frac{x^2+4x+4-x^2-2}{x^2+2}\)
\(=\frac{\left(x+2\right)^2}{x^2+2}-1\)
Mà (x + 2)2 \(\ge0\)và x2 + 2 > 0 nên
\(2A=\frac{\left(x+2\right)^2}{x^2+2}-1\ge-1\)
\(\Rightarrow A\ge-\frac{1}{2}\)
\(\Rightarrow B\ge1-\frac{1}{2}=\frac{1}{2}\)
Đạt được khi \(x=-2\)
Tìm Max
\(A=\frac{2x+1}{x^2+2}=\frac{-x^2+2x-1+x^2+2}{x^2+2}\)
\(=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)(tương tự cái trên)
\(\Rightarrow B\le1+1=2\)
Đạt được khi x = 1
\(B=\frac{x^2+2x+3}{x^2+2}\)
\(\Leftrightarrow Bx^2+2B=x^2+2x+3\)
\(\Leftrightarrow\left(B-1\right)x^2-2x+2B-3=0\)
Để pt (theo x) có nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow1-\left(2B-3\right)\left(B-1\right)\ge0\)
\(\Leftrightarrow2B^2-5B+2\le0\)
\(\Leftrightarrow\frac{1}{2}\le B\le2\)
Vậy \(\hept{\begin{cases}GTNN:\frac{1}{2}\\GTLN:2\end{cases}}\)
Ta có :
\(C=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)
Để C nhận giá trị lớn nhất => \(\frac{12}{x^2+3}\)nhận giá trị lớn nhất
<=> x2 + 3 nhận giá trị nhỏ nhất mà x2 + 3 ≥ 3 ( do x2 ≥ 0 )
=> x2 + 3 = 3 => x2 = 0 => x = 0