Cho P(x) là một đa thức có hệ số nguyên và P(0).P(1) là các số lẻ. chứng tỏ rằng P(x) không thể có nghiệm số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử P(x) có nghiệm a nguyên, P(x)=(x−a).Q(x);Q(x)∈Z[x]
thì P(1)=(1−a)Q(1);P(0)=(0−1)Q(0);
Chú ý (1−a) và (0−a) có một số chẵn, dẫn đến P(1), P(0) không thể cùng lẻ, dẫn đến không có nghiệm nguyên.
Giả sử P(x) có nghiệm a nguyên, P(x)=(x−a).Q(x);Q(x)∈Z[x]
thì P(1)=(1−a)Q(1);P(0)=(0−1)Q(0);
Chú ý (1−a) và (0−a) có một số chẵn, dẫn đến P(1), P(0) không thể cùng lẻ, dẫn đến không có nghiệm nguyên.
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo bài tương tự tại đây nhé.
Giả sử \(f\left(x\right)\)có nghiệm nguyên là \(a\).
Khi đó \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)(với \(g\left(x\right)\)là đa thức với các hệ số nguyên)
\(f\left(1\right)=\left(1-a\right)g\left(1\right)\)là số lẻ nên \(1-a\)là số lẻ suy ra \(a\)chẵn.
\(f\left(2\right)=\left(2-a\right)g\left(2\right)\)là số lẻ nên \(2-a\)là số lẻ suy ra \(a\)lẻ.
Mâu thuẫn.
Do đó \(f\left(x\right)\)không có nghiệm nguyên.
Lời giải:
$P(0)=d$ lẻ
$P(1)=a+b+c+d$ lẻ, mà $d$ lẻ nên $a+b+c$ chẵn. Do đó 3 số này có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn.
Giả sử $P(x)$ có nghiệm nguyên $m$. Khi đó:
$P(m)=am^3+bm^2+cm+d$
Nếu $m$ chẵn thì $am^3+bm^2+cm+d$ lẻ cho $d$ lẻ nên $P(m)\neq 0$
Nếu $m$ lẻ: Do $a,b,c$ nhận giá trị lẻ, chẵn, chẵn hoặc chẵn, chẵn, chẵn nên $am^3+bm^2+cm$ đều chẵn. Kéo theo $P(m)=am^3+bm^2+cm+d$ lẻ
$\Rightarrow P(m)\neq 0$
Tóm lại $P(m)\neq 0$
$\Rightarrow x=m$ không là nghiệm của $P(x)$. Do đó điều giả sử là sai.
Ta có đpcm.
===
thế này không hiểu potay.com
f(x)=(x-a).q(x)
f(0)=(0-a).q(0) "{chỗ nào có x thay bằng 0"}
0-a=-a
=>f(0)=-a.Q(0)
tượng f(1)
===
f(0) lẻ=>(-a).q(0) lẻ
nghĩa là (a lẻ và q(0) cũng phải lẻ)
" một số lẻ không thể là tích của một số chẵn được)
tương tự
f(1) lẻ==>(1-a) & q(1) cùng lẻ
====
a & (1-a) hai số nguyên liên tiếp =>không thể cùng lẻ
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(x-1) cùng tính chẳn lẻ với a+b
Tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(x-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
Đặt: f(x) = a.xⁿ + b.x^(x-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn
với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
~~~~~~~~~~~~