Chứng minh rằng \(n^6+n^4-2n^2\) chia hết cho 72 với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện nhân đa thức và thu gọn
2 n 2 (n + 1) – 2n( n 2 + n – 3) = 6 n ⋮ 6 với mọi giá trị nguyên n.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
\(3^{2n}-9=\left(3^2\right)^n-9=9^n-9\)
+Dễ thấy hiệu trên chia hết cho 9
+Ta có: 9 đồng dư với 1 (mod8)
=>9n đồng dư với 1 (mod8)
=>9n-9 dồng dư với -8 (mod8)
=>9n-9 đồng dư với 0 (mod8)
=>9n-9 chia hết cho 8
Vì (8;9)=1=>32n-9 chia hết cho 72
a) Phân tích 15 n + 15 n + 2 = 113.2. 15 n .
b) Phân tích n 4 – n 2 = n 2 (n - 1)(n +1).
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
Đặt \(A=n^6+n^4-2n^2=n^2(n^4-n^2-2)\)
\(=n^2(n^4-1+n^2-1)\)
\(=n^2\left[(n^2-1)(n^2+1)+n^2-1\right]\)
\(=n^2(n^2-1)(n^2+2)\)
\(=n\cdot n(n-1)(n+1)(n^2+2)\)
+ Nếu n chẵn ta có n = 2k \((k\in N)\)
\(A=4k^2(2k-1)(2k+1)(4k^2+2)=8k^2(2k-1)(2k+1)(2k^2+1)\)
\(\Rightarrow A⋮8\)
+ Nếu n lẻ ta có n = 2k + 1 \((k\in N)\)
\(A=(2k+1)^2\cdot2k(2k+2)(4k^2+4k+1+2)\)
\(=4k(k+1)(2k+1)^2(4k^2+4k+3)\)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
\(\Rightarrow A⋮8\)
Do đó A chia hết cho 8 với mọi \(n\in N\)
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra \(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n \(\in N\)
Chúc bạn học tốt :>