Cho hình chữ nhật ABCD và tam giác vuông EDC như hình dưới đây. Tìm độ dài đoạn BC biết rằng ED = 6 cm, EC = 8 cm, DC = 10 cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có mỗi hình tam giác có được từ đề bài là: tam giác AED, tam giác EDC và tam giác ECB, tam giác ADC và tam giác BDC.
Diện tích tam giác AED là:
\(\dfrac{1}{2}.AD.AE=\dfrac{1}{2}.4.2=4\) cm vuông
Diện tích tam giác EBC là:
\(\dfrac{1}{2}.4.3=6\) cm vuông
Với tam giác EDC ta kẻ đường cao EH xuống DC
=> EH = BC = 4 cm
DC = AB = 2 + 3 = 5 cm
Diện tích tam giác EDC là:
\(\dfrac{1}{2}.4.5=10\) cm vuông
Diện tích tam giác ADC là:
\(\dfrac{1}{2}.AD.DC=\dfrac{1}{2}.4.5=10\) cm vuông
Diện tích tam giác ABC là:
\(\dfrac{1}{2}.BC.DC=\dfrac{1}{2}.4.5=10\) cm vuông
b. Diện tích hcn ABCD là: 4 x 5 = 20 cm vuông
Mà diện tích tam giác EDC là: 10 cm vuông
=> Tỉ số diện tích của hình tam giác EDC và diện tích hcn ABCD là:
\(\dfrac{10}{20}=\dfrac{1}{2}\)
BD=10cm
BC=AD=8cm
Xét ΔADB vuông tại A có AH là đường cao
nên \(BA^2=BH\cdot BD\)
hay BH=3,6(cm)
Áp dụng PTG, ta có: \(BD=\sqrt{BC^2+CD^2}=10\left(cm\right)\)
Áp dụng HTL, ta có: \(AH=\dfrac{BC\cdot CD}{BD}=4,8\left(cm\right)\)
a: Xét ΔECH vuông tại H và ΔDCE vuông tại E có
góc C chung
=>ΔECH đồng dạng với ΔDCE
b: Xét ΔECD vuông tại E có EH là đường cao
nên ED^2=DH*DC
Bài 1:
Xét tam giác $DHA$ và $DAB$ có:
$\widehat{D}$ chung
$\widehat{DHA}=\widehat{DAB}=90^0$
$\Rightarrow \triangle DHA\sim \triangle DAB$ (g.g)
$\Rightarrow \frac{DH}{DA}=\frac{DA}{DB}\Rightarrow DA^2=DH.DB(1)$
Tương tự: $\triangle BHA\sim \triangle BAD$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BD}\Rightarrow AB^2=BH.BD(2)$
Từ $(1);(2)\Rightarrow (\frac{AD}{AB})^2=\frac{DH}{BH}$
$\Rightarrow \frac{DH}{BH}=(\frac{6}{8})^2=\frac{9}{16}$
$\Rightarrow \frac{DH}{BD}=\frac{9}{25}$
\(\frac{S_{ADB}}{S_{HDA}}=\frac{AH.BD}{AH.HD}=\frac{BD}{HD}=\frac{25}{9}\)
a, Nửa chu vi của hình chữ nhật là :
52 : 2 = 26 [cm]
Chiều dài của hình chữ nhật dài số cm là :
[26 + 10] : 2 = 18 [cm]
Chiều rộng của hình chữ nhật dài số cm là :
26 - 8 = 18 [cm]
Diện tích của hình chữ nhật là :
18 x 8 = 144 [cm2]
b,Diện tích hình chữ nhật ABC là :
18 x 8 : 2 = 72 [cm2]
Độ dài đoạn thẳng MB là :
18 : 3 = 6 [cm]
Ta thấy rằng hai hình tam giác ABC và MBC có chung chiêu cao là CB và cạnh đáy MB = \(\frac{1}{3}\)AB nên diện tích hình tam giác ABC gấp 3 lần diện tích hình tam giác MBC.
Vậy diện tích hình tam giác MBC là :
72 x \(\frac{1}{3}\)= 24 [cm2]
Ta vẽ một đoạn thẳng MO vuông góc với đoạn thẳng CD tạo thành môt hình chữ nhật OMBC .
Vậy diện tích hình chữ nhật OMBC là :
8 x 6 = 48 [cm2]
Ta có : OMBC = MBC x 2 [xin các bạn hiều cái này là diện tích ]
= MC x BN : 2 x 2
= MC x BN
=> 48 = MC x BN
=> 48 = 2 x BN x BN
=> 24 =BN2
Vậy BN là căn bậc 2 của 24 nên MC bằng căn bậc 2 của 24 nhân 2. [hình như đề bài sai ấy]
c,Độ dài đoạn thẳng AM là :
18 - 6 = 12 [cm]
Diện tích hình thang AMCD là :
[12 + 18] x 8 : 2 = 120 [cm2]
Diện tích hình tam giác EAM là :
216 - 120 = 96 [cm2]
Độ dài đoạn thẳng AE là :
96 x 2 : 12 = 16 [cm]
Vậy độ dài đoạn thẳng AE là 16 cm .
phần b của cậu sai sai vì lớp 5 đã học căn bậc 2 rồi à
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC\(\sim\)ΔHBC
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
HD=10-3,6=6,4(cm)
Độ dài đoạn BC là
6x8:10=4,8(cm)
Giải
Độ dài đoạn BC là :
6x8:10=4,8(cm)
Vậy đoạn BC =4,8 cm