Cho tam giác EMN vuông tại E, trung tuyến EI
a)Biết MN = 25 cm . Tính EI
b)Vẽ điểm K đối xứng với E qua điểm I . Chứng minh tứ giác EMKN là hình chữ nhật
c)Tìm điều kiện của tam giác vuông EMN để tứ giác EMKN là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MHPK có
I là trung điểm của KH
I là trung điểm của MP
Do đó: MHPK là hình bình hành
mà \(\widehat{MHP}=90^0\)
nên MHPK là hình chữ nhật
Mình vẽ hình hơi xâu, bạn thông cảm nhé!
a) Xét từ giác ABMC có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)
+ DA = DM (gt)
+ DB = DM(gt)
suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật
Các câu còn lại bạn đầu có thể giải theo cách trên nhé!
( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)
a)tứ giác ABMC là hình chữ nhật (vì là hbh có 1 góc vuông)
b)Xét tam giác ABC có:BE=AE,DB=DC=>ED là đường trung bình của tam giác ABC
=>ED//AC=>ED//AF (1)
C/M tương tự DF//AE(DF là đường trung bình của tam giác BAC) (2)
Từ (1),và (2)=>EDFA là hbh.Mà BAC^=90độ=>EDFA là hcn(hbh có 1 góc vuông)
d)ĐK:tam giác ABC là tam giác cân=>AB=AC (4)
Vì AE=1/2AB,AF=1/2AC (5)
Từ (4) và (5)=>AE=AF=>ADEF là hình vuông(vì AEDF mik đã c/m là hcn ở ý b rồi)(hcn có 2 cạnh kề bắng nhau là hình vuông)
a: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến ứng với cạnh huyền BC
nên \(AD=BD=CD=\dfrac{BC}{2}\)
Xét tứ giác ADBK có
E là trung điểm của đường chéo AB
E là trung điểm của đường chéo DK
Do đó: ADBK là hình bình hành
mà DA=DB
nên ADBK là hình thoi
Suy ra: K đối xứng với D qua AB
b: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của BC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//AC và \(DE=\dfrac{AC}{2}\)
mà \(DE=\dfrac{DK}{2}\)
nên DK//AC và DK=AC
hay AKDC là hình bình hành
a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)
Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.
Mà DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)
Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.
b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.
c) Chu vi tứ giác AEBM là 4BM = 8 (cm)
d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.
b: Xét tứ giác ADBK có
E là trung điểm của AB
E là trung điểm của DK
Do đó: ADBK là hình bình hành
mà DA=DB
nên ADBK là hình thoi
Ae giúp mình với mai kiểm tra rồi
a) Vì EI là đường trung tuyến ứng với cạnh huyền MN
\(\Rightarrow MI=IM=EI=\frac{25}{2}=12,5\left(cm\right)\)
b) Vì MI = IN, IE = IK và MN giao EK tại I
=> tứ giác EMKN là hình bình hành
mà \(\widehat{MEN}=90^0\)=> tứ giác EMKN là hình chữ nhật ( đpcm )
c) Để hình chữ nhật EMKN là hình vuông thì ME = EN ( dấu hiệu nhận biết hình vuông )
Từ đây suy ra tam giác EMN vuông cân tại E
Vậy tam giác EMN vuông cân tại E thì tứ giác EMKN là hình vuông