Rút gọn biểu thức: A= \(\frac{\sqrt{x-2017-2\sqrt{x-2018}}}{\sqrt{x-2018}-1}\)Với x > 2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{x-1}{\sqrt{x}-1}+\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}\right).\frac{1}{2\sqrt{x}}=\left[\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x-1}}+\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right].\frac{1}{2\sqrt{x}}\)
\(A=2\left(\sqrt{x}+1\right).\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}}>1=\sqrt{\frac{2019}{2019}}>\sqrt{\frac{2018}{2019}}\) ( đpcm )
...
1/x + 1/y = 1/2018
<=> 1/x = 1/2018 - 1/y = (y - 2018)/(2018y)
<=> x = 2018y/(y - 2018)
=> x + y = 2018y/(y - 2018) + y = y^2/(y - 2018)
=> x - 2018 = 2018y/(y - 2018) - 2018 = 2018^2/(y - 2018)
=> P = 1
a, \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\)-\(\frac{3\left(1+\sqrt{3}\right)}{1+\sqrt{3}}\)
=\(\sqrt{2}-3\)
b,X=\(\sqrt{2019}+\sqrt{2018}\)
(Khử mẫu,nhân tử&mẫu vs\(\sqrt{2019}+\sqrt{2018}\))
Y=\(\sqrt{2018}+\sqrt{2017}\)
(Khử mẫu,nhân tử&mẫu vs\(\sqrt{2018}+\sqrt{2017}\))
So sánh:X & Y<=>X-\(\sqrt{2018}\)&Y-\(\sqrt{2018}\)(Trừ hai vế cho \(\sqrt{2018}\)) <=>\(\sqrt{2019}\)&\(\sqrt{2017}\)
Có:2019>2017
=>\(\sqrt{2019}>\sqrt{2017}\)
=>X>Y
Câu b, mk ko bt có lm đúng ko?