giải pt \(\sqrt{2-3x}=-3x^2+7x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: \(x\leq \frac{2}{3}\)
Ta có: \(\sqrt{2-3x}=-3x^2+7x-1\)
\(\Leftrightarrow 3x^2-7x+1+\sqrt{2-3x}=0\)
\(\Leftrightarrow x(3x-1)-2(3x-1)+\sqrt{2-3x}-1=0\)
\(\Leftrightarrow x(3x-1)-2(3x-1)+\frac{2-3x-1}{\sqrt{2-3x}+1}=0\)
\(\Leftrightarrow (3x-1)\left(x-2-\frac{1}{\sqrt{2-3x}+1}\right)=0\)
Vì \(x\leq \frac{2}{3}; \frac{1}{\sqrt{2-3x}+1}>0\Rightarrow x-2-\frac{1}{\sqrt{2-3x}+1}< \frac{2}{3}-2-0<0\)
Tức là \(x-2-\frac{1}{\sqrt{2-3x}+1}\neq 0\Rightarrow 3x-1=0\Rightarrow x=\frac{1}{3}\) (t/m)
Vậy...........
ta có pt
<=> \(2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-x^2+2x-1\)
\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=\left(2x+1\right)^2+x+8-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)\sqrt{x+8}+x+8-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}+x-1\right)\left(2x+1-\sqrt{x+8}-x+1\right)=0\)
\(\Leftrightarrow\left(3x-\sqrt{x+8}\right)\left(x+2-\sqrt{x+8}\right)=0\)
đến đây thì dễ rồi nhé
(3x-1) (x2 +2) = (3x-1)(7x-10)
=> (3x-1) (x2+2)-(3x-1)(7x-10)=0
=>(3x-1)(x2+2-7x+10)=0
=>(3x-1)(x2-7x+12)=0
=>(3x-1)(x-3)(x-4)=0
=>3x-1=0 => x= 1/3
x-3=0 => x=3
x-4=0 => x=4
vậy pt có tập nghiệm S={ 1/3; 3; 4}
ĐK: \(x\ge1\)
Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)
\(pt\Leftrightarrow3t=t^2-4\)
\(\Leftrightarrow t^2-3t-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)
\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)
\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)
\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)
\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
ĐKXĐ:...
\(\sqrt{3x^2-5x-1}-\sqrt{3x^2-7x+9}+\sqrt{x^2-2}-\sqrt{x^2-3x+13}=0\)
\(\Leftrightarrow\frac{2\left(x-5\right)}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3\left(x-5\right)}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}\right)=0\)
\(\Leftrightarrow x-5=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=5\)
\(\Leftrightarrow\sqrt{12-7x}-\sqrt{x^2-x}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
\(\Rightarrow-\sqrt{3x^2-5x-1}-\sqrt{x^2-x}+\sqrt{x^2-3x+4}+\sqrt{12-7x}=0\)
=>\(x\approx-3,4579061804411\)