Tính giá trị của biểu thức
A,2^10.13+2^10.65/2^8.104
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}.\left(13+65\right)}{2^8.104}=\frac{2^{10}.78}{2^8.104}\)
B = \(\frac{2^2.39}{52}=\frac{2^2.39}{2^2.13}\)
B = \(\frac{39}{13}\)
B = 3
B = \(\frac{2^{10}.13-2^{10}.65}{2^8.104}=\frac{2^{10}.\left(13+65\right)}{2^{8.104}}=\frac{2^{10}.78}{2^8.104}=\frac{2^2.39}{52}=\frac{2^2.39}{2^2.13}=\frac{39}{13}=3\)
\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}.16}{3^9.16}=3\)
\(B=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}.78}{2^8.104}=\frac{2^{10}.26.3}{2^8.2^2.26}=3\)
\(C=\frac{72^3.52^4}{108^4}=\frac{\left(3^2.2^3\right)^3.\left(13.2^2\right)^4}{\left(3^3.2^2\right)^4}=\frac{3^6.2^9.13^4.2^8}{3^{12}.2^8}=\frac{2^9.13^4}{3^6}\)
\(D=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}-\left(3^2\right)^{15}}{2^2.3^{28}}=\frac{11.3^{29}-3^{30}}{2^2.3^{28}}=\frac{3^{29}\left(33-1\right)}{2^2.3^{28}}=\frac{3^{29}.2^5}{2^2.3^{28}}=3.8=24\)
\(\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}.13+2^{10}.5.13}{2^8.2^3.13}=\frac{2^{10}.13\left(1+5\right)}{2^{11}.13}=\frac{2^{10}.13.2.3}{2^{11}.13}=\frac{2^{11}.3.13}{2^{11}.13}=3\)
\(\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}.13+2^{10}.13.5}{2^8.2^3.13}\)
\(=\frac{2^{10}.13+2^{10}.13.5}{2^{11}.13}\)
\(=\frac{2^{10}.13\left(1+5\right)}{2^{11}.13}\)
\(=\frac{2^{10}.13.6}{2^{11}.13}\)
\(=\frac{2^{11}.13.3}{2^{11}.13}=3\)
T_i_c_k cho mình nha mơn bạn nhiều ^^
= 2^10 . ( 13 + 65 ) / 2^8 . 104
= 2^10 . 78 / 2^8 . 104
= 2 . 2 . 2^8 . 78 / 2^8 . 104
= 2^8 . 312 / 104
= 3
1. \(\frac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\frac{3^{10}\left(11+5\right)}{3^9\cdot2^4}=\frac{3^{10}\cdot2^4}{3^9\cdot2^4}=3\)
2. \(\frac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\frac{2^{10}\cdot\left(13+65\right)}{2^8\cdot104}=\frac{2^{10}\cdot78}{2^8\cdot104}=\frac{2^8\cdot2^2\cdot2\cdot3\cdot13}{2^8\cdot2^3\cdot13}=\frac{2^8\cdot2^3\cdot3\cdot13}{2^8\cdot2^3\cdot13}=3\)
3. \(\frac{72^2\cdot54^2}{108^4}=\frac{\left(2^3\cdot3^2\right)^2\cdot\left(2\cdot3^3\right)^2}{\left(2^2\cdot3^3\right)^4}\)
\(=\frac{2^6\cdot3^4\cdot2^2\cdot3^6}{2^8\cdot3^{12}}=\frac{2^8\cdot3^{10}}{2^8\cdot3^{12}}=\frac{3^{10}}{3^{12}}=3^{-2}=\frac{1}{9}\)
4. \(\frac{21^2\cdot14\cdot125}{35^5\cdot6}=\frac{\left(3\cdot7\right)^2\cdot2\cdot7\cdot5^3}{\left(5\cdot7\right)^5\cdot2\cdot3}=\frac{3^2\cdot7^2\cdot2\cdot7\cdot5^3}{5^5\cdot7^5\cdot2\cdot3}=\frac{3^2\cdot7^3\cdot2\cdot5^3}{5^3\cdot5^2\cdot7^2\cdot7^3\cdot2\cdot3}=\frac{3^2}{5^2\cdot3\cdot7^2}=\frac{3}{1225}\)
\(\frac{2^{10}.13+2^{10}.65}{28.104}\)=\(\frac{2^{10}.13+2^{10}.5.13}{2^2.7.2^3.13}\)
=\(\frac{2^{10}.13.\left(5+1\right)}{2^2.7.2^3.13}\)
=\(\frac{2^{10}.13.6}{2^5.7.13}\)
=\(\frac{2^5.6}{7}\)
=\(\frac{32.6}{7}\)
=\(\frac{192}{7}\)