Tìm giá trị nhỏ nhất
B=|x-2016|+|x-1|+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có |x+3|>=0;|2y-14|>=0
=>|x+3|+|2y-14|>=0
=>S>=2016
dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0
=>x+3=0 và 2y-14=0
x=-3 và y=7
Vậy GTNN của S=2016 khi x=-3 và y=7
Ta có:
|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|
=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|
=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)
∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:
|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|
≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2
∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x
⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2
Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016
Vậy GTNNGTNN của biểu thức là 2⇔x=2016
P= |x-2015|+|2016-x| +|x-2017|
=> P = |x-2015|+|x-2016| +|2017-x|
Ta có\(\left|x-2015\right|\ge x-2015\)(với mọi x)
\(\left|x-2016\right|\ge x-2016\)(với mọi x)
\(\left|x-2017\right|\ge x-2017\)(với mọi x)
\(\Rightarrow\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\ge x-2015+0+x-2017\)(với mọi x)
\(\Rightarrow P\ge2\)(với mọi x)
=> P đạt GTNN là 2 khi
\(\hept{\begin{cases}\left|x-2015\right|=0\\\left|x-2016\right|=0\\\left|x-2017\right|=0\end{cases}\hept{\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\ge0\end{cases}\hept{\begin{cases}x\ge2015\\x=2016\\x\ge2017\end{cases}\Rightarrow}}x=2016}\)
Vậy GTNN của P là 2 tại x = 2016
Ta có :
\(\left|x-1,2\right|\ge0;\left|y-\frac{3}{4}\right|\ge0\)
\(\Rightarrow\left|x-\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|-1,5\ge-1,5\forall x;y\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}}\)
Vậy ...
Ta có :
\(2\left|x+3\right|\ge0;3\left|y-1\right|\ge0\)
\(\Rightarrow Q=-14-2\left|x+3\right|-3\left|y-1\right|\le-14\forall x;y\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy ...
Giá trị nhỏ nhất của B = 0
Giá trị lớn nhất của Q = -11
Ta có:I x+2I; I 2y - 10I lớn hơn hoặc bằng 0 vs mọi x
Để S nhỏ nhất thì Ix+2I; I 2y - 10I => x+2 = 0 và 2y-10 = 0 => x=-2 và y=5
Ta thấy |x + 2| ≥ 0 với mọi x
|2y - 10| ≥ 0 với mọi y
=> |x + 2| + |2y - 10| ≥ 0 với mọi x,y
=> |x + 2| + |2y - 10| + 1010 ≥ 1010 với mọi x,y
=> S ≥ 1010 với mọi x,y
Dấu " = " xảy ra
\(\Leftrightarrow\hept{\begin{cases}|x+2|=0\\|2y-10|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}\)
Vậy với x = -2 và y = 5 thì S đạt GTNN là 1010.
a) *Xét x=0
==> Giá trị A=2022!(1)
*Xét 0<x≤2022
==> A=0(2)
*Xét x>2022
==> A≥2022!(3)
Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022
Mà để xmax ==> x=2022
Vậy ...
b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)
Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất
Mà x-2021≠0 =>x-2021=1==>x=2022
Khi đó Bmax=6057
Vậy...
Lời giải:
Ta có:
\(B=|x-2016|+|x-1|+2=|x-2016|+|1-x|+2\)
\(\geq |x-2016+1-x|+2=|-2015|+2=2017\)
Vậy \(B_{\min}=2017\)
Dấu "=" xảy ra khi \((x-2016)(1-x)\geq 0\Leftrightarrow 1\leq x\leq 2016\)