Tìm các chữ a và b để số \(\overline{a455}\) chia hết cho3,5 và không chia hết cho 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{a45b}\) chia hết cho 5 \(\Rightarrow b=0\) hoặc \(b=5\)
Mà \(\overline{a45b}\) không chia hết cho 2 \(\Rightarrow b\) là số lẻ \(\Rightarrow b=5\)
\(\overline{a45b}\) chia hết cho 3 \(\Rightarrow a+4+5+b=a+4+5+5=a+14\) chia hết cho 3
Ta có 14 chia 3 dư 2 \(\Rightarrow a\) chia 3 dư 1
Mà \(1\le a\le9\) \(\Rightarrow a=1;4;7\)
Vậy \(b=5;\) \(a=1\) hoặc \(a=4\) hoặc \(a=7\)
a) \(\overline {12x02y} \) chia hết cho 2 và 5 khi chữ số tận cùng của nó là 0.
=> y = 0
\(\overline {12x020} \) chia hết cho 3 khi tổng các chữ số của nó cũng chia hết cho 3.
Nên (1 + 2 + x + 0 + 2 + 0)\( \vdots \)3
=> (x + 5) \( \vdots \) 3 và \(0 \le x \le 9\)
=> x\( \in \) {1; 4; 7}
Vậy để \(\overline {12x02y} \) chia hết cho 2, 3 và cả 5 thì y = 0 và x \( \in \){1; 4; 7}.
b) \(\overline {413x2y} \) chia hết cho 5 mà không chia hết cho 2 khi chữ số tận cùng của nó là 5
=> y = 5
\(\overline {413x25} \)chia hết cho 9 khi tổng các chữ số của nó cũng chia hết cho 9
Nên (4 + 1 + 3 + x + 2 + 5) \( \vdots \)9
=> (x + 15) \( \vdots \)9 và \(0 \le x \le 9\)
=> x = 3.
Vậy \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2 thì x = 3 và y = 5.
Ta có: \(B⋮2\) và \(B⋮5\)
=>\(B⋮10\)
=>b=0
Ta lại có: \(B⋮3\) => 5+7+a+2+b \(⋮\)3
hay 14+a\(⋮\)3
=> a=1 hoặc a=4 hoặc a=7
Vậy có 3 số thỏa mãn 57120 ; 57420 ; 57720
ko có b
chuẩn!!