Cho tam giác ABC vuông ở A và hình vuông BCDE. Chứng minh rằng: \(AB+AC\le CE\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BAC có :
BA+AC=BC(cạnh huyền của tam giác vuông)
Mà : BC+BE=EC(cạnh huyền của tam giác vuông)
Vậy suy ra : AB+AC<CE
Ta có: ∠ (FAB) = ∠ (ABC) = 60 0
FA // BC (vì có cặp góc ở vị trí so le trong bằng nhau)
BC ⊥ BE (vì BCDE là hình vuông)
Suy ra: FA ⊥ BE
BC ⊥ CD (vì BCDE là hình vuông)
Suy ra: FA ⊥ CD
Gọi giao điểm BE và FA là H, FA và CG là K.
⇒ BH ⊥ FA và FH = HA = a/2 (tính chất tam giác đều)
∠ (ACG) + ∠ (ACB) + ∠ (BCD) = 60 0 + 30 0 + 90 0 = 180 0
⇒ G, C, D thẳng hàng
⇒ AK ⊥ CG và GK = KC = 1/2 GC = 1/2 AC = (a 3 )/2
S F A G = 1/2 GK.AF =
S F B E = 1/2 FH.BE = 1/2 .a/2 .2a = 1/2 a 2 (đvdt)
a: góc ABK=góc ACK=1/2*180=90 độ
=>BK//CH và BK//CH
=>BHCK là hình bình hành
b: góc BDC=góc BEC=90 độ
=>BCDE nội tiếp
c: kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc ADE
=>Ax//DE
=>DE vuông góc AK
a) Giả sử M là trung điểm của BC, \(\Delta ABM\) là tam giác đều nên \(\widehat{ABC}=60^o.\)
Từ đó suy ra: \(\widehat{BCA}=30^o\). Theo định lí Py-ta-go, ta có:
AC = \(\sqrt{BC^2-AB^2}\)
AC = \(\sqrt{4a^2-a^2}=a\sqrt{3}.\)
Do đó, ta có:
SABC = \(\dfrac{1}{2}AB.AC=\dfrac{1}{2}a^2\sqrt{3}.\) (1)
b) Vì \(\widehat{FAB}=\widehat{ABC}=60^o\) nên FA // BC (hai góc so le trong), từ đó suy ra FA vuông góc với BE và CG.
Gọi giao điểm của FA và BE là H, giao điểm của FA và CG là K. Ta có:
SFAG = \(\dfrac{1}{2}FA.GK=\dfrac{1}{2}a.\dfrac{a\sqrt{3}}{2}=\dfrac{1}{4}a^2\sqrt{3},\) (2)
SFBE = \(\dfrac{1}{2}BE.FH=\dfrac{1}{2}.2a.\dfrac{a}{2}=\dfrac{1}{2}a^2.\) (3)
c) SBDCE = 4a2, (4)
SABF = \(\dfrac{1}{4}a^2\sqrt{3},\) (5)
SACG = \(\dfrac{3}{4}a^2\sqrt{3}.\) (6)
Từ (1), (2), (3), (4), (5), (6), ta có:
SDEFG = \(\dfrac{a^2}{4}\left(18+7\sqrt{3}\right)\approx7,53a^2.\)
3b)
Ta có tg BNK vuông tại K ->BN>BK
Ta có IK=MN(tính chất đoạn chắn)
Ta có : BC+MN=BK+KC+MN=BK+BI+IK=2BK
Vì BK<BN->2BK<2BN->BN>BK/2->BN>BC+MN/2
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC(Cạnh huyền-góc nhọn)
b. Ta có : AB = BE + EA
CA = CD + DA
MÀ : AB=CA ( TAM GIÁC ABC CÂN TẠI A )
EA=DA ( ΔADB=ΔAEC)
⇒BE=CD
XÉT ΔOBE VÀ ΔOCD
CÓ : \(\widehat{E}=\widehat{D}\) (GT)
BE=CD (CMT)
\(\widehat{EBO}=\widehat{DCO}\) (ΔADB=ΔAEC)
⇒ΔOBE = ΔOCD (G-C-G)
⇒OB = OC (2 CẠNH TƯƠNG ỨNG)
⇒ΔBOC CÂN TẠI O