2x=3y=5z và x-3y+5z=-75
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x+3y-5z}{10+12-15}=\dfrac{2x-3y+5z}{10-12+15}\\ \Rightarrow A=\dfrac{10+12-15}{10-12+15}=\dfrac{7}{13}\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2};\dfrac{y}{5}=\dfrac{z}{4}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{4x-3y+5z}{60-30+40}=\dfrac{7}{70}=\dfrac{1}{10}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{15}{10}=\dfrac{3}{2}\\y=1\\z=\dfrac{8}{10}=\dfrac{4}{5}\end{matrix}\right.\)
Theo đề bài, ta có:
\(\frac{x}{\frac{1}{2}}\)= \(\frac{y}{\frac{1}{3}}\) = \(\frac{z}{\frac{1}{5}}\)= \(\frac{x-3y+5z}{\frac{1}{2}-3.\frac{1}{3}+5.\frac{1}{5}}=\frac{-7,5}{\frac{1}{2}}=-15\)
Vậy x = \(\frac{1}{2}.-15=-7,5\)
y = \(\frac{1}{3}.-15=-5\)
z = \(\frac{1}{5}.-15=-3\)
Ta có: 2x + 3y + 5z = 2000
=> 4y + 3y + 3y = 2000
=> 10y = 2000
=> y = 2000 : 10 = 200
=> x = 200 x 4 : 2 = 400
Vậy x = 400
a,Ta có : \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
Suy ra :\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x-15k;y=10k;z=8k\)
Ta có : \(4(15k)-3(10k)+5(8k)=7\)
\(\Rightarrow60k-30k+40k=7\)
\(\Rightarrow70k=7\). Suy ra \(k=\frac{1}{10}\)
Ta có : \(x=\frac{1}{10}\cdot15=\frac{3}{2}\)
\(y=\frac{1}{10}\cdot10=1\)
Mình chỉ giải có chừng này thôi
Câu b mk làm sau
\(xy+2x-y=7\)
\(xy+2x=7+y\)
\(x\left(y+2\right)=7+y\)
\(x=\frac{7+y}{y+2}\)
Ta có:
\(x:y:z=5:4:3\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\z=3k\end{matrix}\right.\)
\(\Rightarrow\frac{2x+3y-5z}{2x-3y+5z}=\frac{2.5k+3.4k-5.3k}{2.5k-3.4k+5.3k}=\frac{10k+12k-15k}{10k-12k+15k}=\frac{7k}{13k}=\frac{7}{13}\)
Ta có:
\(2x=3y=5z\)\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{3y}{30}=\dfrac{2z}{12}=\dfrac{x+3y-2z}{15+30-12}=\dfrac{66}{33}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=30\\y=20\\z=12\end{matrix}\right.\)
Đổi với chương trình lớp 7 thì chị nên thêm câu "Áp dụng tính chất dãy tỉ số bằng nhau ta có: " nhé