K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

Gọi số tự nhiên cần tìm là a ( a \(\in\) N* )

Theo đề ra , ta có :

a chia cho 8 dư 5 \(\Rightarrow a+3⋮8\)

a chia cho 10 dư 7 \(\Rightarrow a+3⋮10\)

a chia cho 15 dư 12 \(\Rightarrow a+3⋮15\)

a chia cho 20 dư 17 \(\Rightarrow a+3⋮20\)

\(\Rightarrow a+3⋮8,10,15,20\Rightarrow a+3\in BC\left(8,10,15,20\right)\)

Ta có : \(8=2^3;10=2.5;15=3.5;20=2^2.5\)

\(\Rightarrow BCNN\left(8,10,15,20\right)=2^3.3.5=120\)

\(\Rightarrow BC\left(8,10,15,20\right)=\left\{0;120;240;...\right\}\)

\(\Rightarrow a+3\in\left\{0;120;240;...\right\}\Rightarrow a\in\left\{0;117;237;...\right\}\)

Mà : a nhỏ nhất \(\ne0\Rightarrow a=117\)

Vậy số tự nhiên cần tìm là 117

17 tháng 12 2016

Gọi số cần tìm là a

Ta có a : 8 dư 5 => a + 3 ⋮ 8

a : 10 dư 7 => a + 3 ⋮ 10

a : 15 dư 12 => a + 3 ⋮ 15

a : 20 dư 17 => a + 3 ⋮ 20

=>a + 3\(\in\) BC(8,10,15,20)

8 = 23

10 = 2.5

15 = 3.5

20 = 22.5

BCNN(8,10,15,20) = 23.3.5 = 120

=> a + 3 \(\in\) BC(8,10,15,20) = B(120) = {0;120;240;...}

=> a \(\in\) {-3;117;237;...}

Vì a nhỏ nhất nên a = 117

4 tháng 12 2017

Gọi a là số cần tìm

=> a+10 sẽ chia hết cho 15, 20, 25 (Do a:15 dư 5, a:20 dư 10 và a:25 dư 15)

=> a+10 sẽ là BSC (15,20,25)

Ta có: 15=3.5

           20=22.5

           25=52

=> BSCNN (15,20,25)=22.3.52=300

=> a+10=300 => a=300-10

a=290

Đáp số: Số cần tìm là 290

7 tháng 12 2020

ê thằng cu kia

7 tháng 12 2020

Tìm số tự nhiên nhỏ nhất chia cho 8, 10 , 15, 20 có só dư lần lượt là 5, 7, 12, 17 và chia hết cho 41

Gọi a là số tự nhiên nhỏ nhất cần tìm :

Theo bài ra, ta có:

\(⋮8\)(dư 5 )

\(a⋮10\left(dư7\right)\)

\(a⋮15\left(dư12\right)\)

\(a⋮20\left(dư17\right)\)

Ta tìm BCNN ( \(8;10;15;20\))

8=23

10=2.5

15=3.5

20=22.5

Nên BCNN là : 120

Lại có: \(a⋮41\)nên \(a=41.k\left(k\in N\right)\)

\(\Rightarrow n+3=41k+3\)

\(\Rightarrow41k+3⋮120\)

\(\Rightarrow41k⋮120-3\)

\(\Rightarrow41k⋮117\)

\(\Rightarrow a⋮117\)

Theo bài thì ta có:

\(a⋮41vs117\)

\(\Rightarrow a\in BC\left(41vs117\right)\)

Vì a là \(ℕ\)nhỏ nhất thuộc BC của 41 và 117

\(\Rightarrow a=BCNN\left(41;117\right)\)

Mà 41 và 117 là hai số nguyên tố trùng nhau nên BCNN ( 41;117 ) = 4797

Vậy số cần tìm là 4797

17 tháng 2 2018

20 tháng 11 2018

Gọi số phải tìm là a, a ∈ N

Vì a chia cho 8,12,15 được số dư lần lượt là 6,10,13 nên (a+2) chia hết cho 8,12,15.

Suy ra (a+2)BC(8,12,15)

Ta có: 8 =  2 3 ; 12 =  2 2 . 3 ; 15 = 3.5

=> BCNN(8,12,15) =  2 3 .3.5 = 120

Suy ra (a+2)BC(8,12,15) = B(120)

Do đó, a+2 = 120k => a = 120 – 2 (kN*)

Lần lượt cho k = 1,2,3,… đến k = 5 thì được a = 598 ⋮ 23

Vậy số phải tìm là 598

3 tháng 10 2020

khong bit