Tìm số tự nhiên a nhỏ nhất, biết: a : 8 cho 10, cho 15, cho 20 được số dư lần lượt là: 5 ; 7 ; 12 ; 17 và biết a chia hết cho 79
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là a ( a \(\in\) N* )
Theo đề ra , ta có :
a chia cho 8 dư 5 \(\Rightarrow a+3⋮8\)
a chia cho 10 dư 7 \(\Rightarrow a+3⋮10\)
a chia cho 15 dư 12 \(\Rightarrow a+3⋮15\)
a chia cho 20 dư 17 \(\Rightarrow a+3⋮20\)
\(\Rightarrow a+3⋮8,10,15,20\Rightarrow a+3\in BC\left(8,10,15,20\right)\)
Ta có : \(8=2^3;10=2.5;15=3.5;20=2^2.5\)
\(\Rightarrow BCNN\left(8,10,15,20\right)=2^3.3.5=120\)
\(\Rightarrow BC\left(8,10,15,20\right)=\left\{0;120;240;...\right\}\)
\(\Rightarrow a+3\in\left\{0;120;240;...\right\}\Rightarrow a\in\left\{0;117;237;...\right\}\)
Mà : a nhỏ nhất \(\ne0\Rightarrow a=117\)
Vậy số tự nhiên cần tìm là 117
Gọi số cần tìm là a
Ta có a : 8 dư 5 => a + 3 ⋮ 8
a : 10 dư 7 => a + 3 ⋮ 10
a : 15 dư 12 => a + 3 ⋮ 15
a : 20 dư 17 => a + 3 ⋮ 20
=>a + 3\(\in\) BC(8,10,15,20)
8 = 23
10 = 2.5
15 = 3.5
20 = 22.5
BCNN(8,10,15,20) = 23.3.5 = 120
=> a + 3 \(\in\) BC(8,10,15,20) = B(120) = {0;120;240;...}
=> a \(\in\) {-3;117;237;...}
Vì a nhỏ nhất nên a = 117
Gọi a là số cần tìm
=> a+10 sẽ chia hết cho 15, 20, 25 (Do a:15 dư 5, a:20 dư 10 và a:25 dư 15)
=> a+10 sẽ là BSC (15,20,25)
Ta có: 15=3.5
20=22.5
25=52
=> BSCNN (15,20,25)=22.3.52=300
=> a+10=300 => a=300-10
a=290
Đáp số: Số cần tìm là 290
Tìm số tự nhiên nhỏ nhất chia cho 8, 10 , 15, 20 có só dư lần lượt là 5, 7, 12, 17 và chia hết cho 41
Gọi a là số tự nhiên nhỏ nhất cần tìm :
Theo bài ra, ta có:
a \(⋮8\)(dư 5 )
\(a⋮10\left(dư7\right)\)
\(a⋮15\left(dư12\right)\)
\(a⋮20\left(dư17\right)\)
Ta tìm BCNN ( \(8;10;15;20\))
8=23
10=2.5
15=3.5
20=22.5
Nên BCNN là : 120
Lại có: \(a⋮41\)nên \(a=41.k\left(k\in N\right)\)
\(\Rightarrow n+3=41k+3\)
\(\Rightarrow41k+3⋮120\)
\(\Rightarrow41k⋮120-3\)
\(\Rightarrow41k⋮117\)
\(\Rightarrow a⋮117\)
Theo bài thì ta có:
\(a⋮41vs117\)
\(\Rightarrow a\in BC\left(41vs117\right)\)
Vì a là \(ℕ\)nhỏ nhất thuộc BC của 41 và 117
\(\Rightarrow a=BCNN\left(41;117\right)\)
Mà 41 và 117 là hai số nguyên tố trùng nhau nên BCNN ( 41;117 ) = 4797
Vậy số cần tìm là 4797
Gọi số phải tìm là a, a ∈ N
Vì a chia cho 8,12,15 được số dư lần lượt là 6,10,13 nên (a+2) chia hết cho 8,12,15.
Suy ra (a+2) ∈ BC(8,12,15)
Ta có: 8 = 2 3 ; 12 = 2 2 . 3 ; 15 = 3.5
=> BCNN(8,12,15) = 2 3 .3.5 = 120
Suy ra (a+2) ∈ BC(8,12,15) = B(120)
Do đó, a+2 = 120k => a = 120 – 2 (k ∈ N*)
Lần lượt cho k = 1,2,3,… đến k = 5 thì được a = 598 ⋮ 23
Vậy số phải tìm là 598