cmr 52n+1 + 2n+1 + 2n+4chia hết cho 23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để n+5 chia hết cho n-1 thì n-1 phải thuộc Ư(n+5)
Để 2m+4 chia hết cho n+2 thì n+2 phải thuộc Ư(2n+4)
Để 6n+4 chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(6n+4)
Để 3-2n chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(3-2n)
Ta có : \(\left(3n-4\right)⋮\left(2n+1\right)\)
\(\Leftrightarrow2\left(3n-4\right)⋮\left(2n+1\right)\)
\(\Leftrightarrow\left(6n-8\right)⋮\left(2n+1\right)\)
\(\Leftrightarrow\left[3\left(2n+1\right)-3-8\right]⋮\left(2n+1\right)\)
\(\Leftrightarrow\left[3\left(2n+1\right)-11\right]⋮\left(2n+1\right)\)
Vì \(\left(2n+1\right)⋮\left(2n+1\right)\Rightarrow3\left(2n+1\right)⋮\left(2n+1\right)\)
Nên \(11⋮\left(2n+1\right)\)
Do đó \(2n+1\)thuộc ước của 11
\(\Rightarrow2n+1\in\left\{-11;-1;1;-11\right\}\)
Rồi bạn giải tiếp nha ! Chúc bạn học tốt !
2n +1 ⋮ n-2
n+n+1⋮n-2
n+n-2-2+5⋮n+2
2(n-2)+5 ⋮ n-2
⇒ 5 ⋮ n- 2
hay n-2 ∈ Ư(5)={1;5;-1;-5}
⇒ n ∈ { 3,7,1,-3 }
Vậy n = 3,7,1,-3
a) điều kiện \(n\in Z\)
\(n^2+2n+4=n^2+2n+1+3=\left(n+1\right)^2+3\) chia hết cho 11
\(\Leftrightarrow\left(n+1\right)^2+3\) thuộc ước của 11 là \(\pm1;\pm11\)
ta có : \(\left\{{}\begin{matrix}\left(n+1\right)^2+3=1\\\left(n+1\right)^2+3=-1\\\left(n+1\right)^2+3=11\\\left(n+1\right)^2+3=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(n+1\right)^2=-2\left(vôlí\right)\\\left(n+1\right)^2=-4\left(vôlí\right)\\\left(n+1\right)^2=8\\\left(n+1\right)^2=-14\left(vôlí\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1=\sqrt{8}\\n+1=-\sqrt{8}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=\sqrt{8}-1\left(loại\right)\\n=-\sqrt{8}-1\left(loại\right)\end{matrix}\right.\) vậy không có giá trị nào thỏa mãn
b) điều kiện \(x\in Z\)
\(n^2+2n-4=n^2+2n+1-5=\left(n+1\right)^2-5\) chia hết cho 11
\(\Leftrightarrow\left(n+1\right)^2-5\) thuộc ước của 11 là \(\pm1;\pm11\)
ta có : \(\left\{{}\begin{matrix}\left(n+1\right)^2-5=1\\\left(n+1\right)^2-5=-1\\\left(n+1\right)^2-5=11\\\left(n+1\right)^2-5=-11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(n+1\right)^2=6\\\left(n+1\right)^2=4\\\left(n+1\right)^2=16\\\left(n+1\right)^2=-6\left(vôlí\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}n+1=\sqrt{6}\\n+1=-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=2\\n+1=-2\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=4\\n+1=-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}n=\sqrt{6}-1\left(loại\right)\\n=-\sqrt{6}-1\left(loại\right)\end{matrix}\right.\\\left\{{}\begin{matrix}n=1\left(tmđk\right)\\n=-3\left(tmđk\right)\end{matrix}\right.\\\left\{{}\begin{matrix}n=3\left(tmđk\right)\\n=-5\left(tmđk\right)\end{matrix}\right.\end{matrix}\right.\)
vậy \(n=1;n=-3;n=3;n=-5\)
Các bạn chú ý dấu { và [. Các dấu này khác nhau và việc dùng sai chúng dẫn tới lời giải của bài toán sai hoàn toàn.
- Dấu { có nghĩa là " và " hay " đồng thời xảy ra" thường chỉ dùng trong tìm điều kiện xác định hoặc những cái nào cần nhiều hơn 2 điều kiện.
- Dấu [ có nghĩa là hoặc : nghĩa là cái này xảy ra hoặc cái kia xảy ra, không nhất thiết cả hai cái cùng xảy ra.
Ví dụ: \(\left(n+1\right)^2\) là ước của 5. Như vậy có 4 trường hợp độc lập xảy ra và việc tồn tại của trường hợp này độc lập so với trường hợp khác nên ta dùng dấu [ để chia các trường hợp. Nếu dùng dấu { - có nghĩa là mọi điều kiện phải thỏa mãn - điều này sai về lô-gic khi \(\left(n+1\right)^2\) không thể vừa bằng 1 và vừa bằng 5 được.
Các bạn chú ý các lỗi sai về lô-gic sẽ bị trừ điểm rất nặng trong bài thi.
2n+1 chia hết cho 5
=> 3(2n+1)chia hết cho 5
=> 6n+3 chia hết cho 5
=> (6n+3)+5 chia hết cho 5 vì 5 chia hết cho 5
=> 6n+8 chia hết cho 5
=> 2(3n+4)chia hết cho 5
=> 3n+4 chia hết cho 5
Vậy 3n+4 chia hết cho 5
n2 + 2n + 4 chia hết cho n + 1
=> n2 + n + n + 1 + 3 chia hết cho n + 1
=> n(n + 1) + (n + 1) + 3 chia hết cho n + 1
Vì n(n + 1) và n + 1 chia hết cho n + 1 nên 3 chia hết cho n + 1
=> n + 1 là ước của 3
Ư(3) = {1;-1;3;-3}
Ta có: n + 1 = 1 => n = 0
n + 1 = -1 => n = -2
n + 1 = 3 => n = 2
n + 1 = -3 => n = -4
Vì n là số tự nhiên nên n = {0;2}
Vậy..
Dieu kien n khac -1
n2+2n+4=(n2+2n+1)+3=(n+1)2+3
De n2+2n+4 chia het cho n+1 thi 3 phai chia het cho n+1 hay n+1 la uoc cua 3
Suy ra n+1 nhan cac gia tri -3;-1;1;3
Suy ra n nhan cac gia tri -4;-2;0;2(TM n khac -1)
a) => 2n+1 thuộc Ư(15) = {-1,-3,-5,-15,1,3,5,15}
Ta có bảng :
2n+1 | -1 | -3 | -5 | -15 | 1 | 3 | 5 | 15 |
n | -1 | -2 | -3 | -8 | 0 | 1 | 2 | 7 |
Vậy n= {-8,-3,-2,-1,0,1,2,7}
b) \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}=1+\frac{3}{n+1}\)
=> n+1 thuộc Ư(3) = {-1,-3,1,3}
Ta có bảng :
n+1 | -1 | -3 | 1 | 3 |
n | -2 | -4 | 0 | 2 |
Vậy n= {-4,-2,0,2}
c) \(\frac{n+5}{n-1}=\frac{n-1+6}{n-1}=\frac{n-1}{n-1}+\frac{6}{n-1}=1+\frac{6}{n-1}\)
=> n-1 thuộc Ư(6) = {-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n-1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | 0 | -1 | -2 | -5 | 2 | 3 | 4 | 7 |
Vậy n={-5,-2,-1,0,2,3,4,7}
n+4 chia hết cho n+1
<=> n+1+3 chia hết cho n+1
<=> n+1 chia hết cho n+1
3 chia hết cho n+1
=> n+1 thuộc Ư(3)={-1;-3;1;3}
ta có bảng
vậy n thuộc {-4;-2;0;2}
còn phần b tớ chưa làm đc