Cho tam giác ABC, đường cao Ah, gọi D là điểm đối xứng của H qua trung điểm M của AB
a) CM : ADBH là hình chữ nhật
b) Tìm điều kiện của tam giác ABC để ADBH là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Hình chữ nhật ADBH là hình vuông \(\Leftrightarrow\) AB vuông góc HD
Mà AC // HD (do ADHC là hình bình hành)
\(\Leftrightarrow\) AB vuông góc với AC
\(\Leftrightarrow\) góc BAC = 90 độ
\(\Leftrightarrow\) tam giác ABC vuông tại A
Vậy, khi tam giác ABC vuông cân tại A thì tứ giác ADBH là hình vuông .
toan lop 8 thi mk chiu thoi mk moi hoc lop 7 .ket ban vs mk nhe
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
d/ Xét t/g ABC cân tại A có AH là đường cao
=> AH đồng thời là đường trung tuyến
=> H là trung điểm BC
Gọi K là trung điểm AH
Có tứ giác ADHC là hình bình hành
=> AH cắt DC tại trung điểm mỗi đường.
=> AH cắt DC tại K
Hay K ∈ DCMà F là giao điểm DC và HE
=> CK cắt HE tại FXét t/g AHC có
E là trung điểm ACK là trung điểm AHCK cắt HE tại F
=> F là trọng tâm t/g AHC
=> 3EF = HE (1)Xét t/g ABC có
E là trung điểm AC (GT)H là trung điểm BC (cmt)=> HE là đườngtrung bình t/g ABC
=> HE = 1/2 AB
=> 2 HE = AB (2)Từ(1) và (2)=> AB = 6EF
ADBH có MA=MB(gt); MH=MD(vì D đx H qua M)=>ADBH là hình bình hành. Mà hbh ADBH có 1 góc vuông tại H(gt) nên ADBH là hình chữ nhật.
Hình chữ nhật ADBH là hình vuông<=>AH=BH<=> AH=1/2 BC<=> AH vừa là đường cao vừa là đường trung tuyến<=> tam giác ABC vuông tại A.
Vậy hcn ADBH là hv khi và chỉ khi tam giác ABC là tam giác vuông tại A.
a, Bạn Huy làm đúng rồi.
b, ADBH là hình vuông khi AH = BH
\(\Rightarrow\Delta AHB\) vuông cân tại H
\(\Rightarrow\widehat{ABH}=45^0\Rightarrow\widehat{ABC}=45^0\)
Vậy \(\Delta ABC\) có \(\widehat{ABC}=45^0\) thì ADBH là hình vuông.