K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 11 2018

Bài 1 bạn tìm quanh quanh đây, mình thấy có bài y hệt rồi nên ko làm nữa

Bài 2 như sau:

ĐKXĐ: \(x\ge\dfrac{-1}{16}\)

\(x^2-x-20-2\left(\sqrt{16x+1}-9\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-2\dfrac{\left(\sqrt{16x+1}-9\right)\left(\sqrt{16x+1}+9\right)}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\dfrac{32\left(x-5\right)}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4-\dfrac{32}{\sqrt{16x+1}+9}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-5=0\Rightarrow x=5\\x+4-\dfrac{32}{\sqrt{16x+1}+9}=0\left(1\right)\end{matrix}\right.\)

Xét phương trình (1): ta có \(x+4\ge-\dfrac{1}{16}+4=\dfrac{63}{16}\) \(\forall x\ge-\dfrac{1}{16}\)

\(\sqrt{16x+1}+9\ge9\Rightarrow\dfrac{32}{\sqrt{16x+1}+9}\le\dfrac{32}{9}\) \(\forall x\ge-\dfrac{1}{16}\)

\(\dfrac{63}{16}-\dfrac{32}{9}=\dfrac{55}{144}>0\) \(\Rightarrow x+4-\dfrac{32}{\sqrt{16x+1}+9}>0\) \(\forall x\ge-\dfrac{1}{16}\)

\(\Rightarrow\) pt (1) vô nghiệm

Vậy pt đã cho có nghiệm duy nhất \(x=5\)

24 tháng 11 2018

cám ơn bạn

26 tháng 2 2022

cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?

31 tháng 8 2016

ko biết

31 tháng 8 2016

Bài quá dễ tự làm đi 

k mình mình giải cho

NV
26 tháng 11 2021

ĐKXĐ:...

a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành:

\(3a^2-2b^2+ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow3a=2b\)

\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)

\(\Leftrightarrow...\)

 

NV
26 tháng 11 2021

b. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

Phương trình trở thành:

\(a^2+2+ab=3a+b\)

\(\Leftrightarrow a^2-3a+2+ab-b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow...\)

1 tháng 9 2023

1) \(\sqrt[]{9\left(x-1\right)}=21\)

\(\Leftrightarrow9\left(x-1\right)=21^2\)

\(\Leftrightarrow9\left(x-1\right)=441\)

\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)

2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)

\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)

\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)

mà \(\sqrt[]{1-x}\ge0\)

\(\Leftrightarrow pt.vô.nghiệm\)

3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)

\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)

\(\Leftrightarrow2x=50\Leftrightarrow x=25\)

1 tháng 9 2023

1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))

\(\Leftrightarrow3\sqrt{x-1}=21\)

\(\Leftrightarrow\sqrt{x-1}=7\)

\(\Leftrightarrow x-1=49\)

\(\Leftrightarrow x=49+1\)

\(\Leftrightarrow x=50\left(tm\right)\)

2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))

\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý) 

Phương trình vô nghiệm

3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)

\(\Leftrightarrow2x=50\)

\(\Leftrightarrow x=\dfrac{50}{2}\)

\(\Leftrightarrow x=25\left(tm\right)\)

4) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

5) \(\sqrt{\left(x-3\right)^2}=3-x\)

\(\Leftrightarrow\left|x-3\right|=3-x\)

\(\Leftrightarrow x-3=3-x\)

\(\Leftrightarrow x+x=3+3\)

\(\Leftrightarrow x=\dfrac{6}{2}\)

\(\Leftrightarrow x=3\)

25 tháng 10 2019

c) Bài này nghiệm đẹp nên cứ yên tâm bình phương:) Còn em lâu rồi ko đi khủng bố tinh thần người đọc:P

ĐK: \(x\ge-\frac{1}{16}\)

PT \(\Leftrightarrow x^2-x-2+\frac{2\sqrt{1+16x}}{9}\left(\sqrt{1+16x}-9\right)-\frac{2\left(1+16x\right)}{9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{4}{9}\right)+\frac{2\sqrt{1+16x}}{9}\left(\frac{16\left(x-5\right)}{\sqrt{1+16x}+9}\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{4}{9}+\frac{32\sqrt{1+16x}}{9\left(\sqrt{1+16x}+9\right)}\right)=0\)

Cái ngoặc to luôn dương.

Do đó x = 5

P/s: Em đánh máy lỗi chỗ nào thì nhắn hộ em:D

25 tháng 10 2019

a)ĐK:...

Đặt \(\sqrt{x+5}=a;\sqrt{3-x}=b\ge0\Rightarrow a^2+b^2=8\)

Theo đề bài ta có hệ \(\left\{{}\begin{matrix}a+b-2\left(ab+1\right)=0\\a^2+b^2=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b-2ab-2=0\\\left(a+b\right)^2-2ab-8=0\end{matrix}\right.\)

Lấy pt dưới trừ pt trên thu được \(\left(a+b\right)^2-\left(a+b\right)-6=0\Leftrightarrow\left[{}\begin{matrix}a+b=3\\a+b=-2\left(L\right)\end{matrix}\right.\)

Thay a + b = 3 vào pt đầu ta suy ra \(ab=\frac{1}{2}\)

Theo hệ thức Viet đảo: a, b là hai nghiệm của pt:\(t^2-3t+\frac{1}{2}=0\)

\(\Leftrightarrow t\in\left\{\frac{3+\sqrt{7}}{2};\frac{3-\sqrt{7}}{2}\right\}\).Đến đây xét 2 th:

TH1: \(\left\{{}\begin{matrix}a=\frac{3+\sqrt{7}}{2}\\b=\frac{3-\sqrt{7}}{2}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\frac{3-\sqrt{7}}{2}\\b=\frac{3+\sqrt{7}}{2}\end{matrix}\right.\) nữa là xong! (em nghĩ vậy thôi chứ ko chắc ở đoạn dùng hệ thức Viet đảo đâu!)

NV
14 tháng 1 2021

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

NV
14 tháng 1 2021

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!