Tìm số tự nhiên x biết:
- a) Số M = 64x \(\vdots\) 3 nhưng M\(\not \vdots\)15 và M\(\not \vdots\)19
- b) 18 \(\vdots\)( x - 3 ) và 26 \(\vdots\) ( x + 1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên a nhỏ nhất khác 0 và a ⋮ 28 và a ⋮ 32
Do đó a = BCNN(28, 32)
28 = 22.7
32 = 25
Thừa số nguyên tố chung là 2, thừa số nguyên tố riêng là 7. Số mũ lớn nhất của 2 là 5, của 7 là 1
Nên a = BCNN(28, 32) = 25.7 = 224.
a) Theo đề bài: 84 chia hết cho a và 180 chia hết cho a nên a là ƯC(84, 180) và a > 6.
Ta có: 84 = 22.3.7
180 = 22. 32.5
ƯCLN(84, 180) = 22. 3 = 12
=> a \( \in \) ƯC(84, 180) = Ư(12) = {1; 2; 3; 4; 6; 12}
Mà a > 6.
=> a = 12.
Vậy tập hợp A = {12}
b) Vì b chia hết cho 12, b chia hết cho 15, b chia hết cho 18 nên b là BC(12, 15, 18) và 0 < b <300
Ta có: \(12 = 2^2. 3; 15 = 3.5; 18 = 2.3^2\)
\(\Rightarrow BCNN(12, 15, 18) = 2^2 . 3^2.5 = 180\)
=> b\( \in \) BC(12, 15, 18) = B(180) = {0; 180; 360;...}
Mà 0 < b < 300
=> b = 180
Vậy tập hợp B = {180}
\(24\, \vdots\, 6\)
\(45 \not{\vdots}\, 10\)
\(35 \,\vdots \,5\)
\(42 \not{\vdots}\, 4\).
Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}
-8 chia hết cho x và 12 chia hết cho x
-8\(⋮\)x và 12 \(⋮\)x
=>x\(\in\)ƯC(-8,12)={\(\pm\)1;\(\pm\)2;\(\pm\)4}
Chúc bn học tốt
\(a \vdots b\) nếu có \({q_1} \ne 1\) để \(a = b.{q_1}\)
\(b \vdots a\) nếu có \({q_2} \ne 1\) để \(b = a.{q_2}\).
Suy ra \(a = b.{q_1} = \left( {a.{q_2}} \right).{q_1}\)\( = a.{q_1}.{q_2} = a.\left( {{q_1}.{q_2}} \right)\)\( \Rightarrow {q_1}.{q_2} = 1\)
Mà \({q_1} \ne 1\) và \({q_2} \ne 1\) nên \({q_1} = {q_2} = - 1\) vì chỉ có \(\left( { - 1} \right).\left( { - 1} \right) = 1\)
Vậy \(a = - b\) và \(b = - a\). Hay a và b là hai số đối nhau và khác nhau.
Các số nguyên cần tìm là các số nguyên khác 0 vì chỉ có số 0 có số đối bằng chính nó.
ta có :18=2.32; 135=32 .5.7
UCLN(18,315)=32=9
B(9)={0;9;18;27;....}
mà 5 < x ≤11
⇒x= 9 (tm)